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Abstract

During years several approaches to what preferred extremals of K&hler action and solutions
of the Kahler-Dirac equation could be have been proposed and the challenge is to see whether
at least some of these approaches are consistent with each other. It is good to list various
approaches first.

1. For preferred extremals generalization of conformal invariance to 4-D situation is very
attractive approach and leads to concrete conditions formally similar to those encoun-
tered in string model. The approach based on basic heuristics for massless equations, on
effective 3-dimensionality, and weak form of electric magnetic duality is also promising.
An alternative approach is inspired by number theoretical considerations and identifies
space-time surfaces as associative or co-associative sub-manifolds of octonionic imbed-
ding space.

2. There are also several approaches for solving the Ké&hler-Dirac equation. The most
promising approach is assumes that other than right-handed neutrino modes are re-
stricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange looking
view is a rather natural consequence of number theoretic vision. The conditions stating
that electric charge is conserved for preferred extremals is an alternative very promising
approach.

In this chapter the question whether these various approaches are mutually consistent is
discussed. It indeed turns out that the approach based on the wel-definedness of electric
charge leads under rather general assumptions to the proposal that solutions of the Kéahler-
Dirac equation are localized on 2-dimensional string world sheets and/or partonic 2-surfaces.
This leads to a considerable progress in the understanding of super Virasoro representations
for super-symplectic and super-Kac-Moody algebra. In particular, the proposal is that super-
Kac-Moody currents assignable to string world sheets define duals of gauge potentials and their
generalization for gravitons: in the approximation that gauge group is Abelian - motivated by
the notion of finite measurement resolution - the exponents for the sum of KM charges would
define non-integrable phase factors. One can also identify Yangian as the algebra generated
by these charges. The approach allows also to understand the special role of the right handed
neutrino in SUSY according to TGD.

1 Introduction

During years several approaches to what preferred extremals of Kéhler action and solutions of the
Kahler-Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other.

The notion of preferred extremal emerged when I still lived in positive energy ontology. In
zero energy ontology (ZEO) situation changes since 3-surfaces are now unions of space-like 3-
surfaces at the opposite boundaries of causal diamond (CD). If Kéhler action were deterministic,
the attribute “preferred” would become obsolete. One of the most important outcomes of non-
determinism is quantum criticality realized as a conformal invariance acting as gauge symmetries.
The transformations in question are Kac-Moody type symmetries respecting the light-likeness of
partonic orbits identified as surfaces at which the signature of the induced metric changes from
Minkowskian to Euclidian. The orbits can be grouped to conformal equivalence classes and their
number n would define in a natural manner the value of the effective Planck constant heyy = n x h.

One might hope that in finite measurement resolution the attribute “preferred” would not be
needed. Bohr orbitology in ZEO would mean that one has Bohr orbits connecting 3-surfaces at
boundaries of CD and this would give strong correlations between these 3-surfaces. Not all of
them could be connected. Despite these uncertainties, I will talk in the following about preferred
extremals. This means no loss since what is known recently is known for extremals.

It is good to list various approaches first.

1.1 Construction Of Preferred Extremals

There has been considerable progress in the understanding of both preferred extremals and Kéhler-
Dirac equation.
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1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K2]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix). The older approach based on basic heuristics for massless equations, on effective
3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising.
An alternative approach is inspired by number theoretical considerations and identifies space-
time surfaces as associative or co-associative sub-manifolds of octonionic imbedding space

IKT1.

The basic step of progress was the realization that the known extremals of Kéhler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.

(a) The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THF) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that 7" and H* have no common components. Complex
structure of string world sheet makes this possible.

Stringy conditions for metric stating g., = ¢zz = 0 generalize. The condition that
field equations reduce to Tr(TH") = 0 requires that the terms involving Kihler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true
(one can consider also more general manners to satisfy the conditions). The conditions
guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian
structure in the case of Euclidian signature and to the existence of its analog - Hamilton-
Jacobi structure - for Minkowskian signature (Appendix). These conditions state that
certain components of the induced metric vanish in complex coordinates or Hamilton-
Jacobi coordinates.

In string model the replacement of the imbedding space coordinate variables with quan-
tized ones allows to interpret the conditions on metric as Virasoro conditions. In the
recent case a generalization of classical Virasoro conditions to four-dimensional ones
would be in question. An interesting question is whether quantization of these con-
ditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.

The interpretation of the extended algebra as Yangian [AI] [BI] suggested previously
[K12] to act as a generalization of conformal algebra in TGD Universe is attractive.
There is also the conjecture that preferred extremals could be interpreted as quater-
nionic of co-quaternionic 4-surface of the octonionic imbedding space with octonionic
representation of the gamma matrices defining the notion of tangent space quanternion-
icity.

1.2 Understanding Kihler-Dirac Equation
There are several approaches for solving the K&hler-Dirac (or Kéhler-Dirac) equation.

(a) The most promising approach is discussed in this chapter. It assumes that the solu-
tions are restricted on 2-D stringy world sheets and /or partonic 2-surfaces. This strange
looking view is a rather natural consequence of both strong form of holography and of
number theoretic vision, and also follows from the notion of finite measurement resolu-
tion having discretization at partonic 2-surfaces as a geometric correlate. Furthermore,
the conditions stating that electric charge is well-defined for preferred extremals forces
the localization of the modes to 2-D surfaces in the generic case. This also resolves the
interpretational problems related to possibility of strong parity breaking effects since
induce W fields and possibly also Z° field above weak scale, vahish at these surfaces.
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(b) One expects that stringy approach based on 4-D generalization of conformal invari-
ance or its 2-D variant at 2-D preferred surfaces should also allow to understand the
Kahler-Dirac equation. Conformal invariance indeed allows to write the solutions ex-
plicitly using formulas similar to encountered in string models. In accordance with
the earlier conjecture, all modes of the Kéahler-Dirac operator generate badly broken
super-symmetries.

(¢) Covariantly constant right-handed neutrino certainly defines solutions de-localized in-
side entire space-time sheet. This need not be the case if right-handed neutrino is not
covarianty constant since the non-vanishing C'P, part for the induced gamma matri-
ces mixes it with left-handed neutrino. For massless extremals (at least) the C'P, part
however vanishes and right-handed neutrino allows also massless holomorphic modes
de-localized at entire space-time surface and the de-localization inside Euclidian re-
gion defining the line of generalized Feynman diagram is a good candidate for the
right-handed neutrino generating the least broken super-symmetry.This super-symmetry
seems however to differ from the ordinary one in that vg is expected to behave like a
passive spectator in the scattering. Also for the left-handed neutrino solutions localized
inside string world sheet the condition that coupling to right-handed neutrino vanishes
is guaranteed if gamma matrices are either purely Minkowskian or C'P; like inside the
world sheet.

1.3 Measurement Interaction Term And Boundary Conditions

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory.
The big question is how to realize this coupling.

(a) The proposal discussed in previous chapter was that the addition of a measurement
interaction term to the Ké&hler-Dirac action could do the job and solve a handful of
problems of quantum TGD and unify various visions about the physics predicted by
quantum TGD. This proposal implies QCC at the level of Kéhler-Dirac action and
Kahler action. The simplest form of this term is completely analogous to algebraic form
of Dirac action in M* but with integration measure det(g4)'/?d>x restricted to the 3-D
surface in question.

(b) Another possibility consistent with the considerations of this chapter is that QCC is
realized at the level of WCW Dirac operator and Kahler-Dirac operator contains only
interior term. I have indeed proposed that WCW spinor fields with given quantum
charges in Cartan algebra are superpositions of space-time surfaces with same classical
charges. A stronger form of QCC at the level of WCW would be that classical corre-
lation functions for various geometric observables are identical with quantal correlation
functions.

The boundary conditions for Kahler-Dirac equation at space-like 3-surfaces are determined
by the sum the analog of algebraic massless Dirac operator p¥y; in M* coupled to the formal
analog of Higgs field defined by the normal component I'” of the Kahler-Dirac gamma matrix.
Higgs field is not in question. Rather the equation allows to formulate space-time correlate
for stringy mass formula and also to understand how the ground state conformal weight can
be negative half-integer as required by the p-adic mass calculations. At lightlike 3-surfaces
I'™ must vanish and the measurement interaction involving p¥v; vanishes identically.

1.4 Progress In The Understanding Of Super-Conformal Symme-
tries

The considerations in the sequel lead to a considerable progress in the understanding of super
Virasoro representations for super-symplectic and super-Kac-Moody algebra. In particular,
the proposal is that super-Kac-Moody currents assignable to string world sheets define duals



2. About Deformations Of Known Extremals Of Kahler Action 6

of gauge potentials and their generalization for gravitons: in the approximation that gauge
group is Abelian - motivated by the notion of finite measurement resolution - the exponents
for the sum of KM charges would define non-integrable phase factors. One can also identify
Yangian as the algebra generated by these charges. The approach allows also to understand
the special role of the right handed neutrino in SUSY according to TGD. It must be however
emphasized that also a weaker form of Einstein’s equations can be considered solving the
condition that the energy momentum tensor for Kahler action has vanishing divergence [K17]
implying Einstein’s equations with cosmological constant in general relativity. The weaker
form involves several non-constant parameters analogous to cosmological constant.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using
CMAP realized as html files. Links to all CMAP files can be found at http://tgdtheory.
fi/cmaphtml.html|[L2]. Pdf representation of same files serving as a kind of glossary can be
found at http://tgdtheory.fi/tgdglossary.pdf| [L3]. The topics relevant to this chapter
are given by the following list.

e TGD as infinite-dimensional geometry| [L6]
e WCW spinor fields| [L7]

KD equation [L5]
Kaehler-Dirac action| [L4]

2 About Deformations Of Known Extremals Of Kahler
Action

I have done a considerable amount of speculative guesswork to identify what I have used to
call preferred extremals of Kahler action. The difficulty is that the mathematical problem at
hand is extremely non-linear and that I do not know about existing mathematical literature
relevant to the situation. One must proceed by trying to guess the general constraints on
the preferred extremals which look physically and mathematically plausible. The hope is
that this net of constraints could eventually chrystallize to Eureka! Certainly the recent
speculative picture involves also wrong guesses. The need to find explicit ansatz for the
deformations of known extremals based on some common principles has become pressing.
The following considerations represent an attempt to combine the existing information to
achieve this.

2.1 What Might Be The Common Features Of The Deformations
Of Known Extremals

The dream is to discover the deformations of all known extremals by guessing what is common
to all of them. One might hope that the following list summarizes at least some common
features.

2.1.1 Effective three-dimensionality at the level of action

(a) Holography realized as effective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction
j*A, vanishes. This is true if j* vanishes or is light-like, or if it is proportional to
instanton current in which case current conservation requires that C'P, projection of
the space-time surface is 3-dimensional. The first two options for j have a realization
for known extremals. The status of the third option - proportionality to instanton
current - has remained unclear.
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(b)

As T started to work again with the problem, I realized that instanton current could
be replaced with a more general current j = *B A J or concretely: 7% = e“ﬁV‘SBBJW;,
where B is vector field and C'P, projection is 3-dimensional, which it must be in any
case. The contractions of j appearing in field equations vanish automatically with this
ansatz.

Almost topological QFT property in turn requires the reduction of effective boundary
terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak
form of electric magnetic duality. If one generalizes the weak form of electric-magnetic
duality to J = ® %« J one has B = d® and j has a vanishing divergence for 3-D CP,
projection. This is clearly a more general solution ansatz than the one based on pro-
portionality of j with instanton current and would reduce the field equations in concise
notation to Tr(TH*) = 0.

Any of the alternative properties of the Kéhler current implies that the field equations
reduce to Tr(TH*) = 0, where T and H* are shorthands for Maxwellian energy mo-
mentum tensor and second fundamental form and the product of tensors is obvious
generalization of matrix product involving index contraction.

2.1.2 Could Einstein’s equations emerge dynamically?

For 7% satisfying one of the three conditions, the field equations have the same form as the
equations for minimal surfaces except that the metric g is replaced with Maxwell energy
momentum tensor 7.

(a)

This raises the question about dynamical generation of small cosmological constant A:
T = Ag would reduce equations to those for minimal surfaces. For T = Ag Kéahler-Dirac
gamma matrices would reduce to induced gamma matrices and the Kéhler-Dirac oper-
ator would be proportional to ordinary Dirac operator defined by the induced gamma
matrices. One can also consider weak form for 7' = Ag obtained by restricting the con-
sideration to a sub-space of tangent space so that space-time surface is only “partially”
minimal surface but this option is not so elegant although necessary for other than C'Py
type vacuum extremals.

What is remarkable is that 7' = Ag implies that the divergence of T" which in the
general case equals to j° Jg vanishes. This is guaranteed by one of the conditions for
the Kahler current. Since also Einstein tensor has a vanishing divergence, one can ask
whether the condition to T' = kG + Ag could the general condition. This would give
Einstein’s equations with cosmological term besides the generalization of the minimal
surface equations. GRT would emerge dynamically from the non-linear Maxwell’s theory
although in slightly different sense as conjectured [KI13] ! Note that the expression for
G involves also second derivatives of the imbedding space coordinates so that actually a
partial differential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GH*) = 0 and Tr(gH*) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.

Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural
for non-linear variant of Maxwell action. The theory would be also very “stringy” al-
though the fundamental action would not be space-time volume. This can however hold
true only for Euclidian signature. Note that for C' P, type vacuum extremals Einstein
tensor is proportional to metric so that for them the two options are equivalent. For
their small deformations situation changes and it might happen that the presence of G
is necessary. The GRT limit of TGD discussed in [K13] [L1] indeed suggests that CPs
type solutions satisfy Einstein’s equations with large cosmological constant and that the
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small observed value of the cosmological constant is due to averaging and small volume
fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

For massless extremals and their deformations 7' = Ag cannot hold true. The reason is
that for massless extremals energy momentum tensor has component 7Y which actually
quite essential for field equations since one has HE = 0. Hence for massless extremals
and their deformations 7' = Ag cannot hold true if the induced metric has Hamilton-
Jacobi structure meaning that ¢“* and ¢g"Y vanish. A more general relationship of
form T'= kG + AG can however be consistent with non-vanishing 7" but require that
deformation has at most 3-D C'P, projection (C' P, coordinates do not depend on v).

The non-determinism of vacuum extremals suggest for their non-vacuum deformations
a conflict with the conservation laws. In, also massless extremals are characterized by
a non-determinism with respect to the light-like coordinate but like-likeness saves the
situation. This suggests that the transformation of a properly chosen time coordinate
of vacuum extremal to a light-like coordinate in the induced metric combined with
Einstein’s equations in the induced metric of the deformation could allow to handle the
non-determinism.

2.1.3 Are complex structure of CP, and Hamilton-Jacobi structure of M* re-
spected by the deformations?

The complex structure of C'P, and Hamilton-Jacobi structure of M* could be central for the
understanding of the preferred extremal property algebraically.

(a)

There are reasons to believe that the Hermitian structure of the induced metric ((1, 1)
structure in complex coordinates) for the deformations of C'P» type vacuum extremals
could be crucial property of the preferred extremals. Also the presence of light-like
direction is also an essential elements and 3-dimensionality of M?* projection could
be essential. Hence a good guess is that allowed deformations of C'P; type vacuum
extremals are such that (2, 0) and (0, 2) components the induced metric and/or of the
energy momentum tensor vanish. This gives rise to the conditions implying Virasoro
conditions in string models in quantization:

geer =0, gog =0, i,j=12. (2.1)

Holomorphisms of C'P, preserve the complex structure and Virasoro conditions are
expected to generalize to 4-dimensional conditions involving two complex coordinates.
This means that the generators have two integer valued indices but otherwise obey an
algebra very similar to the Virasoro algebra. Also the super-conformal variant of this
algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for C' P, type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M* coordinates.

The integrable decomposition M*(m) = M?(m)+E?(m) of M* tangent space to longitu-
dinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi
structure- could be a very general property of preferred extremals and very natural since
non-linear Maxwellian electrodynamics is in question. This decomposition led rather
early to the introduction of the analog of complex structure in terms of what I called
Hamilton-Jacobi coordinates (u,v,w,w) for M*. (u,v) defines a pair of light-like co-
ordinates for the local longitudinal space M?(m) and (w,w) complex coordinates for
E?(m). The metric would not contain any cross terms between M?2(m) and E?(m):
Guw = Govw = Guw = Gvw = 0.

A good guess is that the deformations of massless extremals respect this structure.
This condition gives rise to the analog of the constraints leading to Virasoro conditions
stating the vanishing of the non-allowed components of the induced metric. gy, = gyy =
Jww = 957 = Juw = Juw = Juw = Jvw = 0. Again the generators of the algebra would
involve two integers and the structure is that of Virasoro algebra and also generalization
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to super algebra is expected to make sense. The moduli space of Hamilton-Jacobi
structures would be part of the moduli space of the preferred extremals and analogous
to the space of all possible choices of complex coordinates. The analogs of infinitesimal
holomorphic transformations would preserve the modular parameters and give rise to a
4-dimensional Minkowskian analog of Virasoro algebra. The conformal algebra acting
on CP, coordinates acts in field degrees of freedom for Minkowskian signature.

2.1.4 Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs
with the second fundamental form. For the deformations of C' P, type vacuum extremals T’
is a complex tensor of type (1, 1) and second fundamental form H* a tensor of type (2, 0)
and (0, 2) so that Tr(TH*) = is true. This requires that second light-like coordinate of
M* is constant so that the M* projection is 3-dimensional. For Minkowskian signature of
the induced metric Hamilton-Jacobi structure replaces conformal structure. Here the depen-
dence of C'P, coordinates on second light-like coordinate of M?(m) only plays a fundamental
role. Note that now 7" is non-vanishing (and light-like). This picture generalizes to the
deformations of cosmic strings and even to the case of vacuum extremals.

2.2 What Small Deformations Of C P, Type Vacuum Extremals Could
Be?

I was led to these arguments when I tried find preferred extremals of Kéahler action, which
would have 4-D CP, and M* projections - the Maxwell phase analogous to the solutions
of Maxwell’s equations that I conjectured long time ago. It however turned out that the
dimensions of the projections can be (Dya < 3,Dcp, = 4) or (Dya = 4,Dep, < 3).
What happens is essentially breakdown of linear superposition so that locally one can have
superposition of modes which have 4-D wave vectors in the same direction. This is actually
very much like quantization of radiation field to photons now represented as separate space-
time sheets and one can say that Maxwellian superposition corresponds to union of separate
photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and
is replaced in TGD with a linear superposition of effects of classical fields on a test particle
topologically condensed simultaneously to several space-time sheets. One can say that linear
superposition is replaced with a disjoint union of space-time sheets. In the following I shall
restrict the consideration to the deformations of C'P; type vacuum extremals.

2.2.1 Solution ansatz

I proceed by the following arguments to the ansatz.

(a) Effective 3-dimensionality for action (holography) requires that action decomposes to
vanishing j*A, term + total divergence giving 3-D “boundary” terms. The first term
certainly vanishes (giving effective 3-dimensionality) for

DgJ*f =j*=0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed
GRT limit these equations are true.

(b) How to obtain empty space Maxwell equations j* = 07 The answer is simple: assume
self duality or its slight modification:

J=xJ

holding for C'P, type vacuum extremals or a more general condition
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J=kxJ ,

In the simplest situation & is some constant not far from unity. * is Hodge dual involving
4-D permutation symbol. k = constant requires that the determinant of the induced
metric is apart from constant equal to that of C'P, metric. It does not require that
the induced metric is proportional to the C'P, metric, which is not possible since M*
contribution to metric has Minkowskian signature and cannot be therefore proportional
to C' P, metric.

One can consider also a more general situation in which k is scalar function as a gen-
eralization of the weak electric-magnetic duality. In this case the Kahler current is
non-vanishing but divergenceless. This also guarantees the reduction to Tr(TH*) = 0.
In this case however the proportionality of the metric determinant to that for C'P
metric is not needed. This solution ansatz becomes therefore more general.

(c) Field equations reduce with these assumptions to equations differing from minimal sur-
faces equations only in that metric g is replaced by Maxwellian energy momentum tensor
T. Schematically:

Tr(TH"*) =0 ,

where T is the Maxwellian energy momentum tensor and H” is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of imbedding
space coordinates.

2.2.2 How to satisfy the condition Tr(TH*) = 0?7

It would be nice to have minimal surface equations since they are the non-linear generalization
of massless wave equations. It would be also nice to have the vanishing of the terms involving
Kahler current in field equations as a consequence of this condition. Indeed, T = kG + Ag
implies this. In the case of C'P, vacuum extremals one cannot distinguish between these
options since C'Ps itself is constant curvature space with G « g. Furthermore, if G and g
have similar tensor structure the algebraic field equations for G and g are satisfied separately
so that one obtains minimal surface property also now. In the following minimal surface
option is considered.

(a) The first opton is achieved if one has

T=Ag .

Maxwell energy momentum tensor would be proportional to the metric! One would
have dynamically generated cosmological constant! This begins to look really interesting
since it appeared also at the proposed GRT limit of TGD)| [L1]. Note that here also non-
constant value of A can be considered and would correspond to a situation in which &
is scalar function: in this case the the determinant condition can be dropped and one
obtains just the minimal surface equations.

(b) Very schematically and forgetting indices and being sloppy with signs, the expression
for T reads as

T =JJ —g/ATr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should
be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on
metric and is constant.

For C'P, type vacuum extremals one obtains

T=—-g+g=0.

Cosmological constant would vanish in this case.
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(c) Could it happen that for deformations a small value of cosmological constant is gener-
ated?

The condition would reduce to

JJ=(A—1)g .

A must relate to the value of parameter k appearing in the generalized self-duality
condition. For the most general ansatz A would not be constant anymore.

This would generalize the defining condition for Kéhler form

JJ =—g (i* = =1 geometrically)

stating that the square of Kéahler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also
M* contribution rather than C P, metric.

(d) Explicitly:

J(xu‘]lf@ = (A - 1)9015 :

Cosmological constant would measure the breaking of Kéhler structure. By writing
g = s+ m and defining index raising of tensors using C'P, metric and their product
accordingly, this condition can be also written as

Jm=(A—1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional
to the C'Py metric. If k is scalar function, this condition can be dropped. Cosmological
constant would not be constant anymore but the dependence on k would drop out from
the field equations and one would hope of obtaining minimal surface equations also now. It
however seems that the dimension of M* projection cannot be four. For 4-D M? projection
the contribution of the M?2 part of the M* metric gives a non-holomorphic contribution to
C P, metric and this spoils the field equations.

For T = kG 4 Ag option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K13] [LI]. The interpretation in this case is that the average
value of cosmological constant is small since the portion of space-time volume containing
generalized Feynman diagrams is very small.

2.2.3 More detailed ansatz for the deformations of C'P, type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the
induced metric is apart from constant conformal factor the metric of C'P;. This would guar-
antee self-duality apart from constant factor and j* = 0. Metric would be in complex C P,
coordinates tensor of type (1, 1) whereas C' P> Riemann connection would have only purely
holomorphic or anti-holomorphic indices. Therefore CP, contributions in Tr(TH*) would
vanish identically. M* degrees of freedom however bring in difficulty. The M* contribution
to the induced metric should be proportional to C' P, metric and this is impossible due to the
different signatures. The M* contribution to the induced metric breaks its Kéhler property
but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of C' P, type vacuum
extremals is following.

(a) Physical intuition suggests that M? coordinates can be chosen so that one has inte-
grable decomposition to longitudinal degrees of freedom parametrized by two light-like
coordinates u and v and to transversal polarization degrees of freedom parametrized by
complex coordinate w and its conjugate. M* metric would reduce in these coordinates
to a direct sum of longitudinal and transverse parts. I have called these coordinates
Hamilton-Jacobi coordinates.
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(b)

(e)

w would be holomorphic function of C' P, coordinates and therefore satisfy the analog
of massless wave equation. This would give hopes about rather general solution ansatz.
u and v cannot be holomorphic functions of CP, coordinates. Unless wither u or
v is constant, the induced metric would receive contributions of type (2, 0) and (0, 2)
coming from u and v which would break Kéhler structure and complex structure. These
contributions would give no-vanishing contribution to all minimal surface equations.
Therefore either u or v is constant: the coordinate line for non-constant coordinate -say
u- would be analogous to the M* projection of CP, type vacuum extremal.

With these assumptions the induced metric would remain (1, 1) tensor and one might
hope that Tr(TH") contractions vanishes for all variables except u because the there
are no common index pairs (this if non-vanishing Christoffel symbols for H involve only
holomorphic or anti-holomorphic indices in C'P, coordinates). For u one would obtain
massless wave equation expressing the minimal surface property.

If the value of k is constant the determinant of the induced metric must be proportional
to the determinant of C'P, metric. The induced metric would contain only the contri-
bution from the transversal degrees of freedom besides C'P; contribution. Minkowski
contribution has however rank 2 as C'P, tensor and cannot be proportional to C'P;
metric. It is however enough that its determinant is proportional to the determinant of
C'P, metric with constant proportionality coefficient. This condition gives an additional
non-linear condition to the solution. One would have wave equation for u (also w and its
conjugate satisfy massless wave equation) and determinant condition as an additional
condition.

The determinant condition reduces by the linearity of determinant with respect to its
rows to sum of conditions involved 0, 1, 2 rows replaced by the transversal M* con-
tribution to metric given if M* metric decomposes to direct sum of longitudinal and
transversal parts. Derivatives with respect to derivative with respect to particular C'P;
complex coordinate appear linearly in this expression they can depend on u via the
dependence of transversal metric components on u. The challenge is to show that this
equation has (or does not have) non-trivial solutions.

If the value of k is scalar function the situation changes and one has only the minimal
surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations
are in question, equations reduces to non-linear generalizations of Euclidian massless wave
equations, and possibly space-time dependent cosmological constant pops up dynamically.
These properties are true also for the GRT limit of TGD| [L1].

2.3 Hamilton-Jacobi Conditions In Minkowskian Signature

The maximally optimistic guess is that the basic properties of the deformations of C'P;
type vacuum extremals generalize to the deformations of other known extremals such as
massless extremals, vacuum extremals with 2-D C' P, projection which is Lagrangian manifold,
and cosmic strings characterized by Minkowskian signature of the induced metric. These
properties would be following.

(a)

The recomposition of M* tangent space to longitudinal and transversal parts giving
Hamilton-Jacobi structure. The longitudinal part has hypercomplex structure but the
second light-like coordinate is constant: this plays a crucial role in guaranteeing the
vanishing of contractions in Tr(TH¥). It is the algebraic properties of g and T which
are crucial. T can however have light-like component T%". For the deformations of C'Py
type vacuum extremals (1, 1) structure is enough and is guaranteed if second light-like
coordinate of M* is constant whereas w is holomorphic function of C'P; coordinates.

What could happen in the case of massless extremals? Now one has 2-D C'P;, projection
in the initial situation and C'P, coordinates depend on light-like coordinate u and single
real transversal coordinate. The generalization would be obvious: dependence on single
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light-like coordinate u and holomorphic dependence on w for complex C' P, coordinates.
The constraint is 7' = Ag cannot hold true since T is non-vanishing (and light-like).
This property restricted to transversal degrees of freedom could reduce the field equa-
tions to minimal surface equations in transversal degrees of freedom. The transversal
part of energy momentum tensor would be proportional to metric and hence covariantly
constant. Gauge current would remain light-like but would not be given by j = xdp A J.
T = kG + Ag seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T=rG+ Ag ,

which has structure (1, 1) in both M?(m) and E?(m) degrees of freedom apart from the
presence of T"" component with deformations having no dependence on v. If the second
fundamental form has (2, 0)+(0, 2) structure, the minimal surface equations are satisfied
provided Kahler current satisfies on of the proposed three conditions and if G and g have
similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints
leading to Virasoro conditions in quantization to give

guu:()a gvv:07 gwwzoa gWZO (22)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for
which an identification in terms of non-local Yangian symmetry has been proposed [K12].
The number of conditions is four and the same as the number of independent field equations.
One can consider similar conditions also for the energy momentum tensor 7" but allowing non-
vanishing component T if deformations has no v-dependence. This would solve the field
equations if the gauge current vanishes or is light-like. On this case the number of equations
is 8. First order differential equations are in question and they can be also interpreted as
conditions fixing the coordinates used since there is infinite number of manners to choose the
Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations
in the linear case by writing the solution as a superposition of left and right propagating
solutions:

§k:ff(u7w)—|—ff(v,w) . (2'3)

This could guarantee that second fundamental form is of form (2, 0)+(0, 2) in both M? and
E? part of the tangent space and these terms if Tr(T H¥) vanish identically. The remaining
terms involve contractions of T“%, T%%" and T¥%, TV with second fundamental form. Also
these terms should sum up to zero or vanish separately. Second fundamental form has
components coming from fjf and f*

Second fundamental form H* has as basic building bricks terms H* given by

oYy = 0,0sh" + (5,) dahlOsh™ . (2.4)

For the proposed ansatz the first terms give vanishing contribution to HY . The terms
containing Christoffel symbols however give a non-vanishing contribution and one can allow
only ff_ or f¥ as in the case of massless extremals. This reduces the dimension of CP,
projection to D = 3.

What about the condition for Kéahler current? Kéahler form has components of type Jym
whose contravariant counterpart gives rise to space-like current component. Jy,, and J,z give
rise to light-like currents components. The condition would state that the J“¥ is covariantly
constant. Solutions would be characterized by a constant Kéhler magnetic field. Also electric
field is represent. The interpretation both radiation and magnetic flux tube makes sense.
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2.4 Deformations Of Cosmic Strings

In the physical applications it has been assumed that the thickening of cosmic strings to
Kahler magnetic flux tubes takes place. One indeed expects that the proposed construction
generalizes also to the case of cosmic strings having the decomposition X4 = X2 x Y2 C
M* x CP,, where X? is minimal surface and Y2 a complex homologically non-trivial sub-
manifold of CP,. Now the starting point structure is Hamilton-Jacobi structure for M2, x Y2
defining the coordinate space.

(a)

The deformation should increase the dimension of either C P, or M* projection or both.
How this thickening could take place? What comes in mind that the string orbits X2 can
be interpreted as a distribution of longitudinal spaces M?(x) so that for the deformation
w coordinate becomes a holomorphic function of the natural Y2 complex coordinate so
that M* projection becomes 4-D but C' P, projection remains 2-D. The new contribution
to the X? part of the induced metric is vanishing and the contribution to the Y2 part
is of type (1,1) and the the ansatz T' = kG + Ag might be needed as a generalization of
the minimal surface equations The ratio of x and G would be determined from the form
of the Maxwellian energy momentum tensor and be fixed at the limit of undeformed
cosmic strong to T = (ag(Y?) — bg(Y?). The value of cosmological constant is now
large, and overall consistency suggests that T'= kG + Ag is the correct option also for
the C' P, type vacuum extremals.

One could also imagine that remaining C' P, coordinates could depend on the complex
coordinate of Y2 so that also C' P, projection would become 4-dimensional. The induced
metric would receive holomorphic contributions in Y2 part. As a matter fact, this option
is already implied by the assumption that Y2 is a complex surface of C'Ps.

2.5 Deformations Of Vacuum Extremals?

What about the deformations of vacuum extremals representable as maps from M* to C'Py?

(a)

The basic challenge is the non-determinism of the vacuum extremals. One should per-
form the deformation so that conservation laws are satisfied. For massless extremals
there is also non-determinism but it is associated with the light-like coordinate so that
there are no problems with the conservation laws. This would suggest that a properly
chosen time coordinate consistent with Hamilton-Jacobi decomposition becomes light-
like coordinate in the induced metric. This poses a conditions on the induced metric.

Physical intuition suggests that one cannot require 7' = Ag since this would mean that
the rank of T' is maximal whereas the original situation corresponds to the vanishing of
T. For small deformations rank two for T looks more natural and one could think that
T is proportional to a projection of metric to a 2-D subspace. The vision about the
long length scale limit of TGD is that Einstein’s equations are satisfied and this would
suggest T' = kG or T' = kG + Ag. The rank of T' could be smaller than four for this
ansatz and this conditions binds together the values of x and G.

These extremals have C'P, projection which in the generic case is 2-D Lagrangian sub-

manifold Y2. Again one could assume Hamilton-Jacobi coordinates for X*. For CP,

one could assume Darboux coordinates (P;, Q;), i = 1,2, in which one has A = P;dQ",

and that Y2 C CP; corresponds to @; = constant. In principle P; would depend on

arbitrary manner on M* coordinates. It might be more convenient to use as coordinates

(u,v) for M? and (P, P,) for Y2. This covers also the situation when M* projection

is not 4-D. By its 2-dimensionality Y2 allows always a complex structure defined by its

induced metric: this complex structure is not consistent with the complex structure of
CP; (Y? is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y2 is a 2-dimensional
sub-manifold X? of X* and defines also 2-D sub-manifold of M*. The following pic-

ture suggests itself. The projection of X2 to M* can be seen for a suitable choice of
Hamilton-Jacobi coordinates as an analog of Lagrangian sub-manifold in M* that is as
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surface for which v and I'm(w) vary and u and Re(w) are constant. X2 would be ob-
tained by allowing u and Re(w) to vary: as a matter fact, (Py, P3) and (u, Re(w)) would
be related to each other. The induced metric should be consistent with this picture.
This would requires g, re(w) = 0.

For the deformations Q1 and ()2 would become non-constant and they should depend
on the second light-like coordinate v only so that only ¢, and g,. and guw g, ., and
gw,w receive contributions which vanish. This would give rise to the analogs of Virasoro
conditions guaranteeing that 7T is a tensor of form (1, 1) in both M? and E? indices and
that there are no cross components in the induced metric. A more general formulation
states that energy momentum tensor satisfies these conditions. The conditions on T'
might be equivalent with the conditions for g and G separately.

Einstein’s equations provide an attractive manner to achieve the vanishing of effective
3-dimensionality of the action. Einstein equations would be second order differential
equations and the idea that a deformation of vacuum extremal is in question suggests
that the dynamics associated with them is in directions transversal to Y2 so that only
the deformation is dictated partially by Einstein’s equations.

Lagrangian manifolds do not involve complex structure in any obvious manner. One
could however ask whether the deformations could involve complex structure in a natural
manner in C'P, degrees of freedom so that the vanishing of g, would be guaranteed
by holomorphy of C'P, complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the
complex structure should relate to the geometry of C'P, somehow. The complex co-
ordinate defined by say z = P; + iQ! for the deformation suggests itself. This would
suggest that at the limit when one puts @1 = 0 one obtains P; = P;(Re(w)) for the
vacuum extremals and the deformation could be seen as an analytic continuation of
real function to region of complex plane. This is in spirit with the algebraic approach.
The vanishing of Kéhler current requires that the Kéhler magnetic field is covariantly
constant: D,J?? =0 and DzJ?* =0 .

One could consider the possibility that the resulting 3-D sub-manifold of CP, can be
regarded as contact manifold with induced Kéhler form non-vanishing in 2-D section
with natural complex coordinates. The third coordinate variable- call it s- of the contact
manifold and second coordinate of its transversal section would depend on time space-
time coordinates for vacuum extremals. The coordinate associated with the transversal
section would be continued to a complex coordinate which is holomorphic function of w
and u.

The resulting thickened magnetic flux tubes could be seen as another representation of
Kahler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather
than cosmic strings. For this ansatz it is however difficult to imagine deformations
carrying Kéhler electric field.

2.6 About The Interpretation Of The Generalized Conformal Alge-
bras

The long-standing challenge has been finding of the direct connection between the super-
conformal symmetries assumed in the construction of the geometry of the “world of classical
worlds” ( WCW ) and possible conformal symmetries of field equations. 4-dimensionality
and Minkowskian signature have been the basic problems. The recent construction provides
new insights to this problem.

(a)

In the case of string models the quantization of the Fourier coefficients of coordinate
variables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra
generators are quadratic in these. Also now Kac-Moody type algebra is expected. If one
were to perform a quantization of the coefficients in Laurents series for complex CPs
coordinates, one would obtain interpretation in terms of su(3) = u(2)+¢ decomposition,
where ¢ corresponds to C'Ps: the oscillator operators would correspond to generators in ¢
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and their commutator would give generators in u(2). SU(3)/SU(2) coset representation
for Kac-Moody algebra would be in question. Kac-Moody algebra would be associated
with the generators in both M* and C' P, degrees of freedom. This kind of Kac-Moody
algebra appears in quantum TGD.

The constraints on induced metric imply a very close resemblance with string models
and a generalization of Virasoro algebra emerges. An interesting question is how the two
algebras acting on coordinate and field degrees of freedom relate to the super-conformal
algebras defined by the symplectic group of 5Mjl_ x C' P, acting on space-like 3-surfaces
at boundaries of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It
has been conjectured that these algebras allow a continuation to the interior of space-
time surface made possible by its slicing by 2-surfaces parametrized by 2-surfaces. The
proposed construction indeed provides this kind of slicings in both M* and CP, factor.

In the recent case, the algebras defined by the Fourier coefficients of field variables
would be Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would
be expressed in terms of the Kac-Moody algebra in the standard Sugawara construction
applied in string models. The algebra acting on field space would be analogous to the
conformal algebra assignable to the symplectic algebra so that also symplectic algebra
is present. Stringy pragmatist could imagine quantization of symplectic algebra by
replacing C' P, coordinates in the expressions of Hamiltonians with oscillator operators.
This description would be counterpart for the construction of spinor harmonics in WCW
and might provide some useful insights.

For given type of space-time surface either CP; or M* corresponds to Kac-Moody
algebra but not both. From the point of view of quantum TGD it looks as that something
were missing. An analogous problem was encountered at GRT limit of TGD [L1].
When Euclidian space-time regions are allowed Einstein-Maxwell action is able to mimic
standard model with a surprising accuracy but there is a problem: one obtains either
color charges or M* charges but not both. Perhaps it is not enough to consider either
CP, type vacuum extremal or its exterior but both to describe particle: this would give
the direct product of the Minkowskian and Euclidian algebras acting on tensor product.
This does not however seem to be consistent with the idea that the two descriptions are
duality related (the analog of T-duality).

Under What Conditions Electric Charge Is Conserved

For The Kahler-Dirac Equation?

One might think that talking about the conservation of electric charge at 21st century is a
waste of time. In TGD framework this is certainly not the case.

(a)

In quantum field theories there are two manners to define em charge: as electric flux
over 2-D surface sufficiently far from the source region or in the case of spinor field
quantum mechanically as combination of fermion number and vectorial isospin. The
latter definition is quantum mechanically more appropriate.

There is however a problem. In standard approach to gauge theory Dirac equation in
presence of charged classical gauge fields does not conserve electric charge as quantum
number: electron is transformed to neutrino and vice versa. Quantization solves the
problem since the non-conservation can be interpreted in terms of emission of gauge
bosons. In TGD framework this does not work since one does not have path integral
quantization anymore. Preferred extremals carry classical gauge fields and the question
whether em charge is conserved arises. Heuristic picture suggests that em charge must
be conserved.

It seems that one should pose the well-definedness of spinorial em charge as an additional
condition. Well-definedness of em charge is not the only problem. How to avoid large parity
breaking effects due to classical Z° fields? How to avoid the problems due to the fact that
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color rotations induced vielbein rotation of weak fields? Does this require that classical weak
fields vanish in the regions where the modes of induced spinor fields are non-vanishing?

This condition might be one of the conditions defining what it is to be a preferred ex-
tremal/solution of Kéhler Dirac equation. It is not however trivial whether this kind of
additional condition can be posed unless it follows automatically from the recent formula-
tion for Kéhler action and Kéhler Dirac action. The common answer to these questions
is restriction of the modes of induced spinor field to 2-D string world sheets (and possibly
also partonic 2-surfaces) such that the induced weak fields vanish. This makes string/parton
picture part of TGD. The vanishing of classical weak fields has also number theoretic inter-
pretation: space-time surfaces would have quaternionic (hyper-complex) tangent space and
the 2-surfaces carrying spinor fields complex (hyper-complex) tangent space.

3.1 Conservation Of EM Charge For Kahler Dirac Equation

What does the conservation of em charge imply in the case of the Kahler-Dirac equation?
The obvious guess that the em charged part of the Kéhler-Dirac operator must annihilate
the solutions, turns out to be correct as the following argument demonstrates.

(a) Em charge as coupling matrix can be defined as a linear combination Q = al + b3,
I35 = Ji; 2%, where I is unit matrix and I5 vectorial isospin matrix, Jy; is the Kéahler form
of CP,, ¥* denotes sigma matrices, and a and b are numerical constants different for
quarks and leptons. Q is covariantly constant in M* x C' P, and its covariant derivatives
at space-time surface are also well-defined and vanish.

(b) The modes of the Kéhler-Dirac equation should be eigen modes of (). This is the case
if the Kéhler-Dirac operator D commutes with (). The covariant constancy of @) can be
used to derive the condition

D,Q¥ = DT =0,
D = D, , D,=[D,Q]=0"D, , I*= {fﬂ,@} . (3.1)

Covariant constancy of J is absolutely essential: without it the resulting conditions
would not be so simple.

It is easy to find that also [D1,@Q]¥ = 0 and its higher iterates [D,,,Q]¥ = 0, D,, =
[Dy—1,Q] must be true. The solutions of the Kéhler-Dirac equation would have an
additional symmetry.

(¢) The commutator Dy = [D, Q] reduces to a sum of terms involving the commutators of
the vectorial isospin I3 = Jj,; X* with the C' P, part of the gamma matrices:

Dy = [Q,D]=[I5T,]0,s"T*" D, . (3.2)

In standard complex coordinates in which U(2) acts linearly the complexified gamma
matrices can be chosen to be eigenstates of vectorial isospin. Only the charged flat space
complexified gamma matrices I'* denoted by I't and I'~ possessing charges 41 and -1
contribute to the right hand side. Therefore the additional Dirac equation D1V = 0
states

DU [Q, D|W = I3(A)ea,T40,s"T*" D,V

= (e, IT =€, T7)9,s" T Dy ¥ =0 . (3.3)

The next condition is

DV = [Q,D)¥ = (e, I +e_,I7)0,s"T*"D,¥ =0 . (3.4)
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Only the relative sign of the two terms has changed. The remaining conditions give
nothing new.

(d) These equations imply two separate equations for the two charged gamma matrices

DW= TOTtD,U =0,
DU = T°T DW=0,
TS = e4x,0,8 T . (3.5)

These conditions state what one might have expected: the charged part of the Kahler-
Dirac operator annihilates separately the solutions. The reason is that the classical W
fields are proportional to e;,4.

The above equations can be generalized to define a decomposition of the energy mo-
mentum tensor to charged and neutral components in terms of vierbein projections.
The equations state that the analogs of the Kéhler-Dirac equation defined by charged
components of the energy momentum tensor are satisfied separately.

(e) In complex coordinates one expects that the two equations are complex conjugates of
each other for Euclidian signature. For the Minkowskian signature an analogous condi-
tion should hold true. The dynamics enters the game in an essential manner: whether
the equations can be satisfied depends on the coefficients a and b in the expression
T = aG + bg implied by Einstein’s equations in turn guaranteeing that the solution
ansatz generalizing minimal surface solutions holds true [K2].

(f) As a result one obtains three separate Dirac equations corresponding to the the neu-
tral part Do¥ = 0 and charged parts DLW = 0 of the Kéhler-Dirac equation. By
acting on the equations with these Dirac operators one obtains also that the commu-
tators [D4, D_], [Do, D+] and also higher commutators obtained from these annihilate
the induced spinor field model. Therefore entire -possibly- infinite-dimensional algebra
would annihilate the induced spinor fields. In string model the counterpart of Dirac
equation when quantized gives rise to Super-Virasoro conditions. This analogy would
suggest that Kahler-Dirac equation gives rise to the analog of Super-Virasoro conditions
in 4-D case. But what the higher conditions mean? Could they relate to the proposed
generalization to Yangian algebra? Obviously these conditions resemble structurally
Virasoro conditions L,,|phys) = 0 and their supersymmetric generalizations, and might
indeed correspond to a generalization of these conditions just as the field equations for
preferred extremals could correspond to the Virasoro conditions if one takes seriously
the analogy with the quantized string.

What could this additional symmetry mean from the point of view of the solutions of the
Kahler-Dirac equation? The field equations for the preferred extremals of Kéhler action
reduce to purely algebraic conditions in the same manner as the field equations for the
minimal surfaces in string model. Could this happen also for the Kéhler-Dirac equation and
could the condition on charged part of the Dirac operator help to achieve this?

This argument was very general and one can ask for simple manners to realize these condi-
tions. Obviously the vanishing of classical W fields in the region where the spinor mode is
non-vanishing defines this kind of condition.

3.2 About The Solutions Of Kihler Dirac Equation For Known Ex-
tremals

To gain perpective consider first Dirac equation in in H. Quite generally, one can construct
the solutions of the ordinary Dirac equation in H from covariantly constant right-handed
neutrino spinor playing the role of fermionic vacuum annihilated by the second half of com-
plexified gamma matrices. Dirac equation reduces to Laplace equation for a scalar function
and solution can be constructed from this “vacuum” by multiplying with the spherical har-
monics of CP, and applying Dirac operator [K7]. Similar construction works quite generally
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thanks to the existence of covariantly constant right handed neutrino spinor. Spinor har-
monics of C' P, are only replaced with those of space-time surface possessing either hermitian
structure of Hamilton-Jacobi structure (corresponding to Euclidian and Minkowskian signa-
tures of the induced metric [K2), [K15] ). What is remarkable is that these solutions possess
well-defined em charge although classical W boson fields are present.

This in sense that H d’Alembertian commutes with em charge matrix defined as a linear
combination of unit matrix and the covariantly constant matrix J*'3; since the commutators
of the covariant derivatives give constant Ricci scalar and J*'3;; term to the d’Alembertian
besides scalar d’Alembertian commuting with em charge. Dirac operator itself does not
commute with em charge matrix since gamma matrices not commute with em charge matrix.

Consider now Kéhler Dirac operator. The square of Kéhler Dirac operator contains commu-
tator of covariant derivatives which contains contraction [I'*,T"] F ;j’,f“k which is quadratic
in sigma matrices of M* x CP, and does not reduce to a constant term commuting which
em charge matrix. Therefore additional condition is required even if one is satisfies with the
commutativity of d’Alembertian with em charge. Stronger condition would be commutativity
with the Kéahler Dirac operator and this will be considered in the following.

To see what happens one must consider space-time regions with Minkowskian and Euclid-
ian signature. What will be assumed is the existence of Hamilton-Jacobi structure [K2]
meaning complex structure in Euclidian signature and hyper-complex plus complex struc-
ture in Minkowskian signature. The goal is to get insights about what the condition that
spinor modes have a well-defined em charge eigenvalue requires. Or more concretely: is the
localization at string world sheets guaranteeing well-defined value of em charge predicted
by Kahler Dirac operator or must one introduce this condition separately? Omne can also
ask whether this condition reduces to commutativity/co-commutativity in number theoretic
vision.

(a) C'P, type vacuum extremals serve as a convenient test case for the Euclidian signature.

In this case the Kahler-Dirac equation reduces to the massless ordinary Dirac equation
in C'P, allowing only covariantly constant right-handed neutrino as solution. Only part
of C'P, so that one give up the constraint that the solution is defined in the entire C'P5.
In this case holomorphic solution ansatz obtained by assuming that solutions depend on
the coordinates ¢%, i = 1,2 but not on their conjugates and that the gamma matrices I'?,
¢ = 1,2, annihilate the solutions, works. The solutions ansatz and its conjugate are of
exactly the same form as in case string models where one considers string world sheets
instead of C' P, region.
The solutions are not restricted to 2-D string world sheets and it is not clear whether
one can assign to them a well-defined em charge in any sense. Note that for massless
Dirac equation in H one obtains all C'P, harmonics as solutions, and it is possible to
talk about em charge of the solution although solution itself is not restricted to 2-D
surface of C'P;.

(b) For massless extremals and a very wide class of solutions produced by Hamilton-Jacobi
structure - perhaps all solutions representable locally as graphs for map M* — CP; -
canonical momentum densities are light-like and solutions are hyper-holomorphic in the
coordinates associated with with string world sheet and annihilated by the conjugate
gamma and arbitrary functions in transversal coordinates. This allows localization to
string world sheets. The localization is now strictly dynamical and implied by the
properties of Kéhler Dirac operator.

(c) For string like objects one obtains massless Dirac equation in X2 x Y2 ¢ M* x Y2,
Y? a complex 2-surface in C'P,. Homologically trivial geodesic sphere corresponds to
the simplest choice for Y2. Modified Dirac operator reduces to a sum of massless
Dirac operators associated with X2 and Y2. The most general solutions would have Y?2
mass. Holomorphic solutions reduces to product of hyper-holomorphic and holomorphic
solutions and massless 2-D Dirac equation is satisfied in both factors.

For instance, for S? a geodesic sphere and X? = M? one obtains M? massivation
with mass squared spectrum given by Laplace operator for S2. Conformal and hyper-
conformal symmetries are lost, and one might argue that this is quite not what one
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(d)

wants. One must be however resist the temptation to make too hasty conclusions since
the massivation of string like objects is expected to take place. The question is whether
it takes place already at the level of fundamental spinor fields or only at the level of
elementary particles constructed as many-fermion states of them as twistor Grassmann
approach assuming massless M* propagators for the fundamental fermions strongly
suggests [K12].

For vacuum extremals the Kahler Dirac operator vanishes identically so that it does not
make sense to speak about solutions.

What can one conclude from these observations?

(a)

The localization of solutions to 2-D string world sheets follows from Kéahler Dirac equa-
tion only for the Minkowskian regions representable as graphs of map M* — CP,
locally. For string like objects and deformations of C'Py type vacuum extremals this is
not expected to take place.

It is not clear whether one can speak about well-defined em charge for the holomorphic
spinors annihilated by the conjugate gamma matrices or their conjugates. As noticed,
for imbedding space spinor harmonics this is however possible.

Strong form of conformal symmetry and the condition that em charge is well-defined
for the nodes suggests that the localization at 2-D surfaces at which the charged parts
of induced electroweak gauge fields vanish must be assumed as an additional condition.
Number theoretic vision would suggest that these surfaces correspond to 2-D commu-
tative or co-commutative surfaces. The string world sheets inside space-time surfaces
would not emerge from theory but would be defined as basic geometric objects.

This kind of condition would also allow duals of string worlds sheets as partonic 2-
surfaces identified number theoretically as co-commutative surfaces. Commutativity
and co-commutativity would become essential elemenents of the number theoretical
vision.

The localization of solutions of the Kahler-Dirac action at string world sheets and par-
tonic 2-surfaces as a constraint would mean induction procedure for Kahler-Dirac ma-
trices from SX* to X2 - that is projection. The resulting em neutral gamma matrices
would correspond to tangent vectors of the string world sheet. The vanishing of the
projections of charged parts of energy momentum currents would define these surfaces.
The conditions would apply both in Minkowskian and Euclidian regions. An alterna-
tive interpretation would be number theoretical: these surface would be commutative
or co-commutative.

3.3 Concrete Realization Of The Conditions Guaranteeing Well-
Defined Em Charge

Well-definedness of the em charge is the fundamental condiiton on spinor modes. Physical
intuition suggests that also classical Z" field should vanish - at least in scales longer than
weak scale. Above the condition guaranteeing vanishing of em charge has been discussed at
very general level. It has however turned out that one can understand situation by simply
posing the simplest condition that one can imagine: the vanishing of classical W and possibly
also ZY fields inducing mixing of different charge states.

(a)

Induced W fields mean that the modes of Kéhler-Dirac equation do not in general have
well-defined em charge. The problem disappears if the induced W gauge fields vanish.
This does not yet guarantee that couplings to classical gauge fields are physical in long
scales. Also classical Z" field should vanish so that the couplings would be purely
vectorial. Vectoriality might be true in long enough scales only. If W and Z° fields
vanish in all scales then electroweak forces are due to the exchanges of corresponding
gauge bosons described as string like objects in TGD and represent non-trivial space-
time geometry and topology at microscopic scale.
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(b)

The conditions solve also another long-standing interpretational problem. Color ro-
tations induce rotations in electroweak-holonomy group so that the vanishing of all
induced weak fields also guarantees that color rotations do not spoil the property of
spinor modes to be eigenstates of em charge.

One can study the conditions quite concretely by using the formulas for the components of
spinor curvature [KI] (http://tgdtheory.fi/public_html/pdfpool/append.pdf| ).

(a)

The representation of the covariantly constant curvature tensor is given by

Ryt = ednel—e2ned Ros = eOnel —e2ned
Ry = ePne2—ednel Ryi = —ene?2+ednel (3.6)
Rys = 4ened+2e'Ae?2 , Rio = 289ned+4el ne? .

Ry1 = Ro3 and Rg3 = —R31 combine to form purely left handed classical W boson fields
and ZY field corresponds to Z° = 2Rs.

Kahler form is given by

J = 2(e°Aned+et ne?) . (3.7)

The vanishing of classical weak fields is guaranteed by the conditions

e nel —e2ne =0,
A ne?—ednet ,
49 Ned +2et Ne? .
(3.8)
There are many manners to satisfy these conditions. For instance, the condition e! =
a x €® and €2 = —a x €3 with arbitrary a which can depend on position guarantees the
vanishing of classical W fields. The C'P, projection of the tangent space of the region
carrying the spinor mode must be 2-D.
Also classical Z° vanishes if a®> = 2 holds true. This guarantees that the couplings
of induced gauge potential are purely vectorial. One can consider other alternaties.
For instance, one could require that only classical Z° field or induced Kéhler form is
non-vanishing and deduce similar condition.

The vanishing of the weak part of induced gauge field implies that the C'P, projection
of the region carrying spinor mode is 2-D. Therefore the condition that the modes of
induced spinor field are restricted to 2-surfaces carrying no weak fields sheets guarantees
well-definedness of em charge and vanishing of classical weak couplings. This condition
does not imply string world sheets in the general case since the C'P; projection of the
space-time sheet can be 2-D.

How string world sheets could emerge?

(a)

(b)

Additional consistency condition to neutrality of string world sheets is that Kahler-Dirac
gamma matrices have no components orthogonal to the 2-surface in question. Hence
various fermionic would flow along string world sheet.

If the Kdhler-Dirac gamma matrices at string world sheet are expressible in terms of
two non-vanishing gamma matrices parallel to string world sheet and sheet and thus
define an integrable distribution of tangent vectors, this is achieved. What is important
that modified gamma matrices can indeed span lower than 4-D space and often do so
as already described. Induced gamma matrices defined always 4-D space so that the
restriction of the modes to string world sheets is not possible.
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(c)

String models suggest that string world sheets are minimal surfaces of space-time surface
or of imbedding space but it might not be necessary to pose this condition separately.

In the proposed scenario string world sheets emerge rather than being postulated from be-
ginning.

(a)

The vanishing conditions for induced weak fields allow also 4-D spinor modes if they are
true for entire spatime surface. This is true if the space-time surface has 2-D projection.
One can expect that the space-time surface has foliation by string world sheets and the
general solution of K-D equation is continuous superposition of the 2-D modes in this
case and discrete one in the generic case.

If the C' P, projection of space-time surface is homologically non-trivial geodesic sphere
52, the field equations reduce to those in M* x S? since the second fundamental form
for 2 is vanishing. It is possible to have geodesic sphere for which induced gauge field
has only em component?

If the C' P, projection is complex manifold as it is for string like objects, the vanishing
of weak fields might be also achieved.

Does the phase of cosmic strings assumed to dominate primordial cosmology correspond
to this phase with no classical weak fields? During radiation dominated phase 4-D string
like objects would transform to string world sheets.Kind of dimensional transmutation
would occur.

Right-handed neutrino has exceptional role in K-D action.

(a)

Electroweak gauge potentials do not couple to vg at all. Therefore the vanishing of W
fields is un-necessary if the induced gamma matrices do not mix right handed neutrino
with left-handed one. This is guaranteed if M* and CP, parts of Kéahler-Dirac oper-
ator annihilate separately right-handed neutrino spinor mode. Also vg modes can be
interpreted as continuous superpositions of 2-D modes and this allows to define overlap
integrals for them and induced spinor fields needed to define WCW gamma matrices
and super-generators.

For covariantly constant right-handed neutrino mode defining a generator of super-
symmetries is certainly a solution of K-D. Whether more general solutions of K-D exist
remains to be checked out.

3.4 Connection With Number Theoretic Vision?

The interesting potential connection of the Hamilton-Jacobi vision to the number theoretic
vision about field equations has been already mentioned.

(a)

The vision that associativity /co-associativity defines the dynamics of space-time surfaces
boils down to M?® — H duality stating that space-time surfaces can be regarded as
associative/co-associative surfaces either in M® or H [K11], [KI8]. Associativity reduces
to hyper-quaternionicity implying that that the tangent/normal space of space-time
surface at each point contains preferred sub-space M?2(x) C M8 and these sub-spaces
forma an integrable distribution. An analogous condition is involved with the definition
of Hamilton-Jacobi structure.

The octonionic representation of the tangent space of M® and H effectively replaces
SO(7,1) as tangent space group with its octonionic analog obtained by the replacement
of sigma matrices with their octonionic counterparts defined by anti-commutators of
gamma matrices. By non-associativity the resulting algebra is not ordinary Lie-algebra
and exponentiates to a non-associative analog of Lie group. The original wrong belief
was that the reduction takes place to the group G of octonionic automorphisms acting
as a subgroup of SO(7). One can ask whether the conditions on the charged part of
energy momentum tensor could relate to the reduction of SO(7,1)
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(c)

What puts bells ringing is that the K&ahler-Dirac equation for the octonionic repre-
sentation of gamma matrices allows the conservation of electromagnetic charge in the
proposed sense. The reason is that the left handed sigma matrices (W charges are left-
handed) in the octonionic representation of gamma matrices vanish identically! What
remains are vectorial=right-handed em and Z° charge which becomes proportional to
em charge since its left-handed part vanishes. All spinor modes have a well-defined em
charge in the octonionic sense defined by replacing imbedding space spinor locally by its
octonionic variant? Maybe this could explain why H spinor modes can have well-defined
em charge contrary to the naive expectations.

The non-associativity of the octonionic spinors is however a problem. Even non-commutativity
poses problems - also at space-time level if one assumes quaternion-real analyticity for

the spinor modes. Could one assume commutativity or co-commutativity for the induced
spinor modes? This would mean restriction to associative or co-associative 2-surfaces

and (hyper-)holomorphic depends on its (hyper-)complex coordinate. The outcome
would be a localization to a hyper-commutative of commutative 2-surface, string world
sheet or partonic 2-surface.

These conditions could also be interpreted by saying that for the Kahler Dirac operator
the octonionic induced spinors assumed to be commutative/co-commutative are equiv-
alent with ordinary induced spinors. The well-definedness of em charge for ordinary
spinors would correspond to commutativity/co-commutativity for octonionic spinors.
Even the Dirac equations based on induced and Kéhler-Dirac gamma matrices could be
equivalent since it is essentially holomorphy which matters.

To sum up, these considerations inspire to ask whether the associativity/co-associativity of
the space-time surface is equivalent with the reduction of the field equations to stringy field
equations stating that certain components of the induced metric in complex/Hamilton-Jacobi
coordinates vanish in turn guaranteeing that field equations reduce to algebraic identifies fol-
lowing from the fact that energy momentum tensor and second fundamental form have no
common components? Commutativity /co-commutativity would characterize fermionic dy-
namics and would have physical representation as possibility to have em charge eigenspinors.
This should be the case if one requires that the two solution ansétze are equivalent.

4

Kahler-Dirac Equation And Super-Symmetries

The previous considerations concerning super-conformal symmetries and space-time SUSY
have been based on general arguments. The new vision about preferred extremals and
Kahler-Dirac equation however leads to a rather detailed understanding of super-conformal
symmetries at the level of field equations and is bound to modify the existing vision about
super-conformal symmetries.

Whether TGD predicts some variant of space-time SUSY or not has been a long-standing
issue: the reason is that TGD does not allow Majorana spinors since fermion number con-
servation is exact. The more precise formulation of field equations made possible by the
realization that spinor modes are localized at string world sheets allows to conclude that the
analog of broken N' = 8 SUSY is predicted at parton level and that right-handed neutrino
generates the minimally broken ' = 2 sub-SUSY.

One important outcome of criticality is the identification of gauge potentials as duals of
Kac-Moody currents at the boundaries of string world sheets: quantum gauge potentials are
defined only where they are needed that is string curves defining the non-integrable phase
factors. This gives also rise to the realization of the conjectured Yangian in terms of the
Kac-Moody charges and commutators in accordance with the earlier conjecture.

4.1

Super-Conformal Symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD
allows two kinds of super-conformal symmetries.
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(a) The first super-conformal symmetry is associated with M} x C'P; and corresponds to
symplectic symmetries of M} x C'P,. The reason for extension of conformal symme-
tries is metric 2-dimensionality of the light-like boundary §MZ% defining upper/lower
boundary of causal diamond (CD). This super-conformal symmetry is something new
and corresponds to replacing finite-dimensional Lie-group G for Kac-Moody symme-
try with infinite-dimensional symplectic group. The light-like radial coordinate of §M$
takes the role of the real part of complex coordinate z for ordinary conformal symmetry.
Together with complex coordinate of S? it defines 3-D restriction of Hamilton-Jacobi
variant of 4-D super-conformal symmetries. One can continue the conformal symme-
tries from light-cone boundary to CD by forming a slicing by parallel copies of JM7.
There are two possible slicings corresponding to the choices 5Mj‘_ and 6M* assignable
to the upper and lower boundaries of CD. These two choices correspond to two arrows
of geometric time for the basis of zero energy states in ZEO.

(b) Super-symplectic degrees of freedom determine the electroweak and color quantum num-

bers of elementary particles. Bosonic emergence implies that ground states assignable
to partonic 2-surfaces correspond to partial waves in M1 and one obtains color partial
waves in particular. These partial waves correspond to the solutions for the Dirac equa-
tion in imbedding space and the correlation between color and electroweak quantum
numbers is not quite correct. Super-Kac-Moody generators give the compensating color
for massless states obtained from tachyonic ground states guaranteeing that standard
correlation is obtained. Super-symplectic degrees are therefore directly visible in par-
ticle spectrum. One can say that at the point-like limit the WCW spinors reduce to
tensor products of imbedding space spinors assignable to the center of mass degrees of
freedom for the partonic 2-surfaces defining wormhole throats.
I have proposed a physical interpretation of super-symplectic vibrational degrees of free-
dom in terms of degrees of freedom assignable to non-perturbative QCD. These degrees
of freedom would be responsible for most of the baryon masses but their theoretical
understanding is lacking in QCD framework.

(¢) The second super-conformal symmetry is assigned light-like 3-surfaces and to the isome-
tries and holonomies of the imbedding space and is analogous to the super-Kac-Moody
symmetry of string models. Kac-Moody symmetries could be assigned to the light-
like deformations of light-like 3-surfaces. Isometries give tensor factor E? x SU(3)
and holonomies factor SU(2);, x U(1). Altogether one has 5 tensor factors to super-
conformal algebra. That the number is just five is essential for the success p-adic mass
calculations [K16 [K7].

The construction of solutions of the Kéahler-Dirac equation suggests strongly that the
fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved
charges associated with the space-like braid strands at both the 3-D space-like ends of
space-time surfaces and with the light-like (or space-like with a small deformation) asso-
ciated with the light-like 3-surfaces. The extension to Yangian algebra involving higher
multi-linears of super-Kac Moody generators is also highly suggestive. These charges
would be non-local and assignable to several wormhole contacts simultaneously. The
ends of braids would correspond points of partonic 2-surfaces defining a discretization of
the partonic 2-surface having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to grav-
itation. The duals of the currents giving rise to Kac-Moody charges would define the
counterparts of gauge potentials and the conserved Kac-Moody charges would define
the counterparts of non-integrable phase factors in gauge theories. The higher Yangian
charges would define generalization of non-integrable phase factors. This would suggest
a rather direct connection with the twistorial program for calculating the scattering
amplitudes implies also by zero energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coefficients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal sym-
metries and give detailed information about the representations of the Kac-Moody algebra
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too.

4.2

WCW Geometry And Super-Conformal Symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps
of progress induce to it only small modifications if any.

(a)

Kahler geometry is forced by the condition that hermitian conjugation allows geometriza-
tion. Kéahler function is given by the Kéhler action coming from space-time regions with
Euclidian signature of the induced metric identifiable as lines of generalized Feynman
diagrams. Minkowskian regions give imaginary contribution identifiable as the analog
of Morse function and implying interference effects and stationary phase approximation.
The vision about quantum TGD as almost topological QFT inspires the proposal that
Kéhler action reduces to 3-D terms reducing to Chern-Simons terms by the weak form
of electric-magnetic duality. The recent proposal for preferred extremals is consistent
with this property realizing also holography implied by general coordinate invariance.
Strong form of general coordinate invariance implying effective 2-dimensionality in turn
suggests that Kahler action is expressible string world sheets and possibly also areas of
partonic 2-surfaces.

The complexified gamma matrices of WCW come as hermitian conjugate pairs and
anti-commute to the Kéhler metric of WCW . Also bosonic generators of symplectic
transformations of §M{ x CP; a assumed to act as isometries of WCW geometry can
be complexified and appear as similar pairs. The action of isometry generators co-
incides with that of symplectic generators at partonic 2-surfaces and string world sheets
but elsewhere inside the space-time surface it is expected to be deformed from the
symplectic action. The super-conformal transformations of §M$ x C' Py acting on the
light-like radial coordinate of JM$ act as gauge symmetries of the geometry meaning
that the corresponding WCW vector fields have zero norm.

WCW geometry has also zero modes which by definition do not contribute to WCW
metric expect possibly by the dependence of the elements of WCW metric on zero
modes through a conformal factor. In particular, induced C'P, K&hler form and its
analog for sphere ), = constant of light cone boundary are symplectic invariants, and
one can define an infinite number of zero modes as invariants defined by Kahler fluxes
over partonic 2-surfaces and string world sheets. This requires however the slicing of
CD parallel copies of 5M_‘f_ or §M*. The physical interpretation of these non-quantum
fluctuating degrees of freedom is as classical variables necessary for the interpretation
of quantum measurement theory. Classical variable would metaphorically correspond
the position of the pointer of the measurement instrument.

The construction receives a strong philosophical inspiration from the geometry of loop
spaces. Loop spaces allow a unique Kéhler geometry with maximal isometry group
identifiable as Kac-Moody group. The reason is that otherwise Riemann connection
does not exist. The only problem is that curvature scalar diverges since the Riemann
tensor is by constant curvature property proportional to the metric. In 3-D case one
would have union of constant curvature spaces labelled by zero modes and the situation
is expected to be even more restrictive. The conjecture indeed is that WCW geometry
exists only for H = M* x CP,: infinite-D Kahler geometric existence and therefore
physics would be unique. One can also hope that Ricci scalar is finite and therefore zero
by the constant curvature property so that Finstein’s equations are satisfied.

The matrix elements of WCW Kéhler metric are given in terms of the anti-commutators
of the fermionic Noether super-charges associated with symplectic isometry currents. A
given mode of induced spinor field characterized by imbedding space chirality (quark
or lepton), by spin and weak spin plus conformal weight n. If the super-conformal
transformations for string modes act gauge transformations only the spinor modes with
vanishing conformal weight correspond to non-zero modes of the WCW metric and the
situation reduces essentially to the analog of N/ = 8 SUSY.
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The WCW Hamiltonians generating symplectic isometries correspond to the Hamilto-
nians spanning the symplectic group of JM${ x C'P,. One can say that the space of
quantum fluctuating degrees of freedom is this symplectic group of SM1 x CP, or its
subgroup or coset space: this must have very deep implications for the structure of the
quantum TGD.

An interesting possibility is that the radial conformal weights of the symplectic algebra
are linear combinations of the zeros of Riemann Zeta with integer coefficients. Also this
option allows to realize the hierarchy of super-symplectic conformal symmetry breakings
in terms of sub-algebras isomorphic to the entire super-symplectic algebra. WCW would
have fractal structure corresponding to a hierarchy of quantum criticalities.

(f) The localization of the induced spinors to string world sheets means that the super-
symplectic Noether charges are associated with strings connecting partonic 2-surfaces.
The physically obvious fact that given partonic surface can be accompanied by an ar-
bitrary number of strings, forces a generalization of the super-symplectic algebra to
a Yangian containing infinite number of n-local variants of various super-symplectic
Noether charges. For instance, four -momentum is accompanied by multi-stringy vari-
ants involving four-momentum Pg* and angular momentum generators. At the first level
of the hierarchy one has P{* = fgCPOB ® J¢. This hierarchy might play crucial role in
understanding of the four-momenta of bound states.

(g) Zero energy ontology brings in additional delicacies. Basic objects are now unions of
partonic 2-surfaces at the ends of CD. One can generalize the expressions for the isometry
generators in a straightforward manner by requiring that given isometry restricts to a
symplectic transformation at partonic 2-surfaces and string world sheets.

(h) One could criticize the effective metric 2-dimensionality forced by the general consistency

arguments as something non-physical. The WCW Hamiltonians are expressed using
only the data at partonic 2-surfaces and string string world sheets: this includes also
4-D tangent space data via the weak form of electric-magnetic duality so that one
has only effective 2-dimensionality. Obviously WCW geometry must huge large gauge
symmetries besides zero modes. The hierarchy of super-symplectic symmetries indeed
represent gauge symmetries of this kind.
Effective 2-dimensionality realizing strong form of holography in turn is induced by the
strong form of general coordinate invariance. Light-like 3-surfaces at which the signature
of the induced metric changes must be equivalent with the 3-D space-like ends of space-
time surfaces at the light-boundaries of space-time surfaces as far as WCW geometry is
considered. This requires that the data from their 2-D intersections defining partonic
2-surfaces should dictate the WCW geometry. Note however that Super-Kac-Moody
charges giving information about the interiors of 3-surfaces appear in the construction
of the physical states.

4.3 The Relationship Between Inertial Gravitational Masses

The relationship between inertial and gravitational masses and Equivalence Principle have
been on of the longstanding problems in TGD. Not surprisingly, the realization how GRT
space-time relates to the many-sheeted space-time of TGD finally allowed to solve the prob-
lem.

4.3.1 ZEO and non-conservation of Poincare charges in Poincare invariant the-
ory of gravitation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the fact
that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact,
the definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe vanish
identically and their densities should vanish in scales below the scale defining the scale for
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observations and assignable to causal diamond (CD). This observation allows to imagine a
ways out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quan-
tum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations.
Classical gravitation should have a thermodynamical description if this interpretation is cor-
rect. The average values of the quantum numbers assignable to a space-time sheet would
depend on the size of CD and possibly also its location in M*. If the temporal distance be-
tween the tips of CD is interpreted as a quantized variant of cosmic time, the non-conservation
of energy-momentum defined in this manner follows. One can say that conservation laws hold
only true in given scale defined by the largest CD involved.

4.3.2 Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that
it reduces to quantum classical correspondence meaning that the classical charges of Kahler
action can be identified with eigen values of quantal charges associated with Ké&hler-Dirac
action.

(a) At quantum level I have proposed coset representations for the pair of super-symplectic
algebras assignable to the light-like boundaries of CD and the Super Kac-Moody alge-
bra assignable to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as
realization of EP. For coset representation the differences of super-conformal generators
would annihilate the physical states so that one can argue that the corresponding four-
momenta are identical. One could even say that one obtains coset representation for
the “vibrational” parts of the super-conformal algebras in question. It is now clear that
this idea does not work. Note however that coset representations occur naturally for
the subalgebras of symplectic algebra and Super Kac-Moody algebra and are naturally
induced by finite measurement resolution.

(b) The most recent view (2014) about understanding how EP emerges in TGD is de-
scribed in [K13] and relies heavily on superconformal invariance and a detailed reali-
sation of ZEO at quantum level. In this approach EP corresponds to quantum clas-
sical correspondence (QCC): four-momentum identified as classical conserved Noether
charge for space-time sheets associated with Kébler action is identical with quantal four-
momentum assignable to the representations of super-symplectic and super Kac-Moody
algebras as in string models and having a realisation in ZEO in terms of wave functions
in the space of causal diamonds (CDs).

(¢) The latest realization is that the eigenvalues of quantal four-momentum can be identified
as eigenvalues of the four-momentum operator assignable to the Kéhler-Dirac equation.
This realisation seems to be consistent with the p-adic mass calculations requiring that
the super-conformal algebra acts in the tensor product of 5 tensor factors.

4.3.3 Equivalence Principle at classical level

How Einstein’s equations and General Relativity in long length scales emerges from TGD
has been a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum ex-
tremals are only approximate representations of the physical situation and that small fluc-
tuations around them give rise to an inertial four-momentum identifiable as gravitational
four-momentum identifiable in terms of Einstein tensor. EP would hold true in the sense
that the average gravitational four-momentum would be determined by the Einstein tensor
assignable to the vacuum extremal. This interpretation does not however take into account
the many-sheeted character of TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an effective theory
obtained by endowing M* with effective metric.
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(a) The replacement of superposition of fields with superposition of their effects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the effects caused by the classical fields at the space-time
sheets (see Fig. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg or Fig. 11
in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M*? coordinates for the space-time sheets. One can define
effective metric as sum of M* metric and deviations. This effective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c¢) Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the effective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the effective space-time.

(d) The breaking of Poincare invariance could have interpretation as effective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kéhbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kéhler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K17].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define “inertial” color charges. Since the induced color fields are proportional to color
Hamiltonians multiplied by Kéahler form they vanish identically for vacuum extremals in
accordance with “gravitational” color confinement.

4.3.4 Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core ele-
ment of p-adic mass calculations.

(a) The first thing that one can get worried about relates to the extension of conformal
symmetries. If the conformal symmetries generalize to D = 4, how can one take seriously
the results of p-adic mass calculations based on 2-D conformal invariance? There is
no reason to worry. The reduction of the conformal invariance to 2-D one for the
preferred extremals takes care of this problem. This however requires that the fermionic
contributions assignable to string world sheets and/or partonic 2-surfaces - Super- Kac-
Moody contributions - should dictate the elementary particle masses. For hadrons also
symplectic contributions should be present. This is a valuable hint in attempts to
identify the mathematical structure in more detail.

(b) ZEO suggests that all particles, even virtual ones correspond to massless wormhole
throats carrying fermions. As a consequence, twistor approach would work and the
kinematical constraints to vertices would allow the cancellation of divergences. This
would suggest that the p-adic thermal expectation value is for the longitudinal M2
momentum squared (the definition of CD selects M C M? C M* as also does number
theoretic vision). Also propagator would be determined by M? momentum. Lorentz
invariance would be obtained by integration of the moduli for CD including also Lorentz
boosts of CD.
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(c)

In the original approach one allows states with arbitrary large values of L as physical
states. Usually one would require that Ly annihilates the states. In the calculations how-
ever mass squared was assumed to be proportional Ly apart from vacuum contribution.
This is a questionable assumption. ZEO suggests that total mass squared vanishes
and that one can decompose mass squared to a sum of longitudinal and transversal
parts. If one can do the same decomposition to longitudinal and transverse parts also
for the Super Virasoro algebra then one can calculate longitudinal mass squared as a
p-adic thermal expectation in the transversal super-Virasoro algebra and only states
with Ly = 0 would contribute and one would have conformal invariance in the standard
sense.

In the original approach the assumption motivated by Lorentz invariance has been that
mass squared is replaced with conformal weight in thermodynamics, and that one first
calculates the thermal average of the conformal weight and then equates it with mass
squared. This assumption is somewhat ad hoc. ZEO however suggests an alternative
interpretation in which one has zero energy states for which longitudinal mass squared of
positive energy state derive from p-adic thermodynamics. Thermodynamics - or rather,
its square root - would become part of quantum theory in ZEO. M-matrix is indeed
product of hermitian square root of density matrix multiplied by unitary S-matrix and
defines the entanglement coefficients between positive and negative energy parts of zero
energy state.

The crucial constraint is that the number of super-conformal tensor factors is N = 5:
this suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom
assignable to string world sheets is enough, when one is interested in the masses of
fermions and gauge bosons. Super-symplectic degrees of freedom can also contribute and
determine the dominant contribution to baryon masses. Should also this contribution
obey p-adic thermodynamics in the case when it is present? Or does the very fact that
this contribution need not be present mean that it is not thermal? The symplectic con-
tribution should correspond to hadronic p-adic length prime rather the one assignable to
(say ) u quark. Hadronic p-adic mass squared and partonic p-adic mass squared cannot
be summed since primes are different. If one accepts the basic rules [K9], longitudinal
energy and momentum are additive as indeed assumed in perturbative QCD.

Calculations work if the vacuum expectation value of the mass squared must be assumed
to be tachyonic. There are two options depending on whether one whether p-adic
thermodynamics gives total mass squared or longitudinal mass squared.

i. One could argue that the total mass squared has naturally tachyonic ground state
expectation since for massless extremals longitudinal momentum is light-like and
transversal momentum squared is necessary present and non-vanishing by the lo-
calization to topological light ray of finite thickness of order p-adic length scale.
Transversal degrees of freedom would be modeled with a particle in a box.

ii. If longitudinal mass squared is what is calculated, the condition would require
that transversal momentum squared is negative so that instead of plane wave like
behavior exponential damping would be required. This would conform with the
localization in transversal degrees of freedom.

4.4 Realization Of Space-Time SUSY In TGD

The generators of super-conformal algebras are obtained by taking fermionic currents for sec-
ond quantized fermions and replacing either fermion field or its conjugate with its particular
mode. The resulting super currents are conserved and define super charges. By replacing
both fermion and its conjugate with modes one obtains c-number valued currents. In this
manner one also obtains the analogs of super-Poincare generators labelled by the conformal
weight and other spin quantum numbers as Noether charges so that space-time SUSY is
suggestive.

The super-conformal invariance in spinor modes is expected to be gauge symmetry so that
only the generators with vanishing string world sheet conformal weight create physical states.
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This would leave only the conformal quantum numbers characterizing super-symplectic gen-
erators (radial conformal weight included) under consideration and the hierarchy of its sub-
algebras acting as gauge symmetries giving rise to a hierarchy of criticalities having interpre-
tation in terms of dark matter.

As found in the earlier section, the proposed anti-commutation relations for fermionic oscilla-
tor operators at the ends of string world sheets can be formulated so that they are analogous
to those for Super Poincare algebra. The reason is that field equations assign a conserved
8-momentum to the light-like geodesic line defining the boundary of string at the orbit of
partonic 2-surface. Octonionic representation of sigma matrices making possible generaliza-
tion of twistor formalism to 8-D context is also essential. As a matter, the final justification
for the analog of space-time came from the generalization of twistor approach to 8-D context.

By counting the number of spin and weak isospin components of imbedding space spinors sat-
isfying massless algebraic Dirac equation one finds that broken A/ = 8 SUSY is the expected
space-time SUSY. A/ = 2 SUSY assignable to right-handed neutrino is the least broken sub-
SUSY and one is forced to consider the possibility that spartners correspond to dark matter
with hefr = n x h and therefore remaining undetected in recent particle physics experiments.

4.4.1 Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coor-
dinates as a formal tool. Many mathematicians are not enthusiastic about this approach
because of the purely formal nature of anti-commuting coordinates. Also I regard them as
a non-sense geometrically and there is actually no need to introduce them as the following
little argument shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann al-
gebra and the natural object replacing super-space is this Grassmann algebra with coefficients
of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just
an ordinary space with additional algebraic structure: the mysterious anti-commuting coor-
dinates are not needed. To me this notion is one of the conceptual monsters created by the
over-pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-
defined object mathematically, and leave space-time untouched. Linear field space is simply
replaced with its Grassmann algebra. For non-linear field space this replacement does not
work. This allows to formulate the notion of linear super-field just in the same manner as it
is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations,
which anti-commute to translations. The super generators @, and QB of super Poincare
algebra are Weyl spinors commuting with momenta and anti-commuting to momenta:

{Qou @5} = 20"

a beta

P, . (4.1)

One particular representation of super generators acting on super fields is given by

0
Da = i )
"0,
.0 B 1
Dy = s +07053,0, (4.2)
aa,l'ph,a

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor €*?. Super-
space interpretation is not necessary since one can interpret this action as an action on
Grassmann algebra valued field mixing components with different fermion numbers.
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Chiral superfields are defined as fields annihilated by Dg. Chiral fields are of form ¥(z* +
i0c*6,0). The dependence on 6 comes only from its presence in the translated Minkowski
coordinate annihilated by D. Super-space enthusiast would say that by a translation of M*
coordinates chiral fields reduce to fields, which depend on 6 only.

4.4.2 The space of fermionic Fock states at partonic 2-surface as TGD counter-
part of chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super
algebra of conserved super-charges. In TGD framework these super charges are naturally as-
sociated with the modified Dirac equation, and anti-commuting coordinates and super-fields
do not appear anywhere. One can however ask whether one could identify a mathematical
structure replacing the notion of chiral super field.

In [K6] it was proposed that generalized chiral super-fields could effectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of
SUSY algebra. One would have N/ = oo if all the conformal excitations of the induced
spinor field restricted on 2-surface are present. For right-handed neutrino the modes are
labeled by two integers and de-localized to the interior of Euclidian or Minkowskian regions
of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in
one-one correspondence with fermionic creation operators and their hermitian conjugates.

(a) Fermionic creation operators - in classical theory corresponding anti-commuting Grass-
mann parameters - replace theta parameters. Theta parameters and their conjugates are
not in one-one correspondence with spinor components but with the fermionic creation
operators and their hermitian conjugates. One can say that the super-field in question is
defined in the “world of classical worlds” ( WCW ) rather than in space-time. Fermionic
Fock state at the partonic 2-surface is the value of the chiral super field at particular
point of WCW .

(b) The matrix defined by the 0#9, is replaced with a matrix defined by the Kéhler-Dirac
operator D between spinor modes acting in the solution space of the Kahler-Dirac
equation. Since Kahler-Dirac operator annihilates the modes of the induced spinor
field, super covariant derivatives reduce to ordinary derivatives with respect the theta
parameters labeling the modes. Hence the chiral super field is a field that depends on
6,, or conjugates 6, only. In second quantization the modes of the chiral super-field
are many-fermion states assigned to partonic 2-surfaces and string world sheets. Note
that this is the only possibility since the notion of super-coordinate does not make sense
now.

(¢) It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or
even parallel four-momenta. The many-fermion state behaves like elementary particle.
This has non-trivial implications for propagators and a simple argument [K6] leads
to the proposal that propagator for N-fermion partonic state is proportional to 1/p™.
This would mean that only the states with fermion number equal to 1 or 2 behave like
ordinary elementary particles.

4.5 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison
with the conformal symmetries of super string models.
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4.5.1 Basic differences between the realization of super conformal symmetries
in TGD and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string
models in several fundamental aspects.

(a)

In TGD framework super-symmetry generators acting as configuration space gamma
matrices carry either lepton or quark number. Majorana condition required by the
hermiticity of super generators which is crucial for super string models would be in
conflict with the conservation of baryon and lepton numbers and is avoided. This is
made possible by the realization of bosonic generators represented as Hamiltonians of
X2local symplectic transformations rather than vector fields generating them [K4].
This kind of representation applies also in Kac-Moody sector since the local transver-
sal isometries localized in X l3 and respecting light-likeness condition can be regarded
as X? local symplectic transformations, whose Hamiltonians generate also isometries.
Localization is not complete: the functions of X? coordinates multiplying symplectic
and Kac-Moody generators are functions of the symplectic invariant J = €*¥J,,,, so that
effective one-dimensionality results but in different sense than in conformal field theo-
ries. This realization of super symmetries is what distinguishes between TGD and super
string models and leads to a totally different physical interpretation of super-conformal
symmetries. The fermionic representations of super-symplectic and super Kac-Moody
generators can be identified as Noether charges in standard manner.

A long-standing problem of quantum TGD was that stringy propagator 1/G does not
make sense if G carries fermion number. The progress in the understanding of second
quantization of the modified Dirac operator made it however possible to identify the
counterpart of G as a c-number valued operator and interpret it as different represen-
tation of G [K3].

The notion of super-space is not needed at all since Hamiltonians rather than vector
fields represent bosonic generators, no super-variant of geometry is needed. The distinc-
tion between Ramond and N-S representations important for N = 1 super-conformal
symmetry and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2
super-conformal symmetry it is already possible to generate spectral flow transforming
these Ramond and N-S representations to each other (G, is not Hermitian anymore).

If Kahler action defines the Kahler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an
infinite number of bound states which eigenvalues converging to a fixed eigenvalue (as
in the case of hydrogen atom). Finite number of generalized eigenmodes means that the
representations of super-conformal algebras reduces to finite-dimensional ones in TGD
framework. Also the notion of number theoretic braid indeed implies this. The physical
interpretation would be in terms of finite measurement resolution. If Kéhler action is
complexified to include imaginary part defined by CP breaking instanton term, the num-
ber of stringy mass square eigenvalues assignable to the spinor modes becomes infinite
since conformal excitations are possible. This means breakdown of exact holography
and effective 2-dimensionality of 3-surfaces. It seems that the inclusion of instanton
term is necessary for several reasons. The notion of finite measurement resolution forces
conformal cutoff also now. There are arguments suggesting that only the modes with
vanishing conformal weight contribute to the Dirac determinant defining vacuum func-
tional identified as exponent of Kéahler function in turn identified as Kéhler action for
its preferred extremal.

What makes spinor field mode a generator of gauge super-symmetry is that is c-number
and not an eigenmode of Dy (X?) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of Dy (X?) is indeed finite means that most of spinor field
modes represent super gauge degrees of freedom.
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4.5.2 The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason
is that WCW gamma matrices possess a well defined fermion number. The hermiticity of
the WCW gamma matrices I' and of the Super Virasoro current G could be achieved by
posing Majorana conditions on the second quantized H-spinors. Majorana conditions can
be however realized only for space-time dimension D mod 8 = 2 so that super string type
approach does not work in TGD context. This kind of conditions would also lead to the
non-conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators S, ST, whose anti-commutator
is Hamiltonian: {S, ST} = H. One can define a simpler system by considering a Hermitian
operator Sy = S+ ST satisfying S2 = H: this relation is completely analogous to the ordinary
Super Virasoro relation GG = L. On basis of this observation it is clear that one should
replace ordinary Super Virasoro structure GG = L with GG = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the
doubling of super generators and super generators carry U(1) charge having an interpretation
as fermion number in recent context. The so called short representations of N = 2 super-
symmetry algebra can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix I';;, n > 0 corresponds to an operator creating fermion whereas I';,,
n < 0 annihilates anti-fermion. For the Hermitian conjugate I'l, the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian
and are constructed as bilinears of the gamma matrices and their Hermitian conjugates and,
just like conserved currents of the ordinary quantum theory, contain parts proportional to
ata, bTb, atb’ and ab (a and b refer to fermionic and anti-fermionic oscillator operators).
The commutators between Kac Moody generators and Kac Moody generators and gamma
matrices remain as such.

For a given value of m G,,, n > 0 creates fermions whereas G,, n < 0 annihilates anti-
fermions. Analogous result holds for Gf,. Virasoro generators remain Hermitian and decom-
pose just like Kac Moody generators do. Thus the usual anti-commutation relations for the
super Virasoro generators must be replaced with anti-commutations between G,, and G
and one has

{G'ma GL} = 2L7n+n + %(mQ - i)(sm,—n 3
{G, Gn} =0 (4.3)
{Gim GL} =0.
The commutators of type [L,,, L] are not changed. Same applies to the purely kinematical
commutators between L,, and G,,/G] .

The Super Virasoro conditions satisfied by the physical states are as before in case of L,
whereas the conditions for G,, are doubled to those of G,,, n < 0 and Gl n>0.

n?

4.5.3 What could be the counterparts of stringy conformal fields in TGD frame-
work?

The experience with string models would suggest the conformal symmetries associated with
the complex coordinates of X2 as a candidate for conformal super-symmetries. One can
imagine two counterparts of the stringy coordinate z in TGD framework.

(a) Super-symplectic and super Kac-Moody symmetries are local with respect to X? in the
sense that the coefficients of generators depend on the invariant J = €8 Jap+/g2 rather
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than being completely free [K4]. Thus the real variable J replaces complex (or hyper-
complex) stringy coordinate and effective 1-dimensionality holds true also now but in
different sense than for conformal field theories.

(b) The slicing of X* by string world sheets Y2 and partonic 2-surfaces X2 implied by

number theoretical compactification implies string-parton duality and involves the super
conformal fermionic gauge symmetries associated with the coordinates v and w in the
dual dimensional reductions to stringy and partonic dynamics. These coordinates define
the natural analogs of stringy coordinate. The effective reduction of X} to braid by finite
measurement resolution implies the effective reduction of X*(X?) to string world sheet.
This implies quite strong resemblance with string model. The realization that spinor
modes with well- define em charge must be localized at string world sheets makes the
connection with strings even more explicit [K15].
One can understand how Equivalence Principle emerges in TGD framework at space-
time level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/
manysheeted. jpg or Fig. 9 in the appendix of this book) is replaced with effective
space-time lumping together the space-time sheets to M* endowed with effective met-
ric. The quantum counterpart EP has most feasible interpretation in terms of Quantum
Classical Correspondence (QCC): the conserved Kéhler four-momentum equals to an
eigenvalue of conserved Kihler-Dirac four-momentum acting as operator.

(c) The conformal fields of string model would reside at X2 or Y? depending on which
description one uses and complex (hyper-complex) string coordinate would be identified
accordingly. Y2 could be fixed as a union of stringy world sheets having the strands
of number theoretic braids as its ends. The proposed definition of braids is unique
and characterizes finite measurement resolution at space-time level. X2 could be fixed
uniquely as the intersection of X} (the light-like 3-surface at which induced metric of
space-time surface changes its signature) with 6M{ x CP. Clearly, wormhole throats
X3 would take the role of branes and would be connected by string world sheets defined
by number theoretic braids.

(d) An alternative identification for TGD parts of conformal fields is inspired by M® — H
duality. Conformal fields would be fields in WCW . The counterpart of z coordinate
could be the hyper-octonionic M® coordinate m appearing as argument in the Laurent
series of WCW Clifford algebra elements. m would characterize the position of the tip
of CD and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford
algebras and thus inclusions of hyper-finite factors of type II;. Reduction to hyper-
quaternionic field -that is field in M* center of mass degrees of freedom- would be
needed to obtained associativity. The arguments m at various level might correspond
to arguments of N-point function in quantum field theory.

4.6 Comparison Of TGD And Stringy Views About Super-Conformal
Symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison
with the conformal symmetries of super string models.

4.6.1 Basic differences between the realization of super conformal symmetries
in TGD and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string
models in several fundamental aspects.

(a) In TGD framework super-symmetry generators acting as configuration space gamma
matrices carry either lepton or quark number. Majorana condition required by the
hermiticity of super generators which is crucial for super string models would be in
conflict with the conservation of baryon and lepton numbers and is avoided. This is
made possible by the realization of bosonic generators represented as Hamiltonians of
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X2Jocal symplectic transformations rather than vector fields generating them [K4].
This kind of representation applies also in Kac-Moody sector since the local transver-
sal isometries localized in X} and respecting light-likeness condition can be regarded
as X? local symplectic transformations, whose Hamiltonians generate also isometries.
Localization is not complete: the functions of X2 coordinates multiplying symplectic
and Kac-Moody generators are functions of the symplectic invariant J = € J,,,, so that
effective one-dimensionality results but in different sense than in conformal field theo-
ries. This realization of super symmetries is what distinguishes between TGD and super
string models and leads to a totally different physical interpretation of super-conformal
symmetries. The fermionic representations of super-symplectic and super Kac-Moody
generators can be identified as Noether charges in standard manner.

A long-standing problem of quantum TGD was that stringy propagator 1/G does not
make sense if G carries fermion number. The progress in the understanding of second
quantization of the modified Dirac operator made it however possible to identify the
counterpart of G as a c-number valued operator and interpret it as different represen-
tation of G [K3].

The notion of super-space is not needed at all since Hamiltonians rather than vector
fields represent bosonic generators, no super-variant of geometry is needed. The distinc-
tion between Ramond and N-S representations important for V = 1 super-conformal
symmetry and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2
super-conformal symmetry it is already possible to generate spectral flow transforming
these Ramond and N-S representations to each other (G, is not Hermitian anymore).

If K&hler action defines the Kéahler-Dirac operator, the number of spinor modes could be
finite. One must be here somewhat cautious since bound state in the Coulomb potential
associated with electric part of induced electro-weak gauge field might give rise to an
infinite number of bound states which eigenvalues converging to a fixed eigenvalue (as
in the case of hydrogen atom). Finite number of generalized eigenmodes means that the
representations of super-conformal algebras reduces to finite-dimensional ones in TGD
framework. Also the notion of number theoretic braid indeed implies this. The physical
interpretation would be in terms of finite measurement resolution. If Ké&hler action is
complexified to include imaginary part defined by CP breaking instanton term, the num-
ber of stringy mass square eigenvalues assignable to the spinor modes becomes infinite
since conformal excitations are possible. This means breakdown of exact holography
and effective 2-dimensionality of 3-surfaces. It seems that the inclusion of instanton
term is necessary for several reasons. The notion of finite measurement resolution forces
conformal cutoff also now. There are arguments suggesting that only the modes with
vanishing conformal weight contribute to the Dirac determinant defining vacuum func-
tional identified as exponent of Kéahler function in turn identified as Kéhler action for
its preferred extremal.

What makes spinor field mode a generator of gauge super-symmetry is that is c-number
and not an eigenmode of D (X?) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of Dy (X?) is indeed finite means that most of spinor field
modes represent super gauge degrees of freedom.

4.6.2 The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason
is that WCW gamma matrices possess a well defined fermion number. The hermiticity of
the WCW gamma matrices I' and of the Super Virasoro current G could be achieved by
posing Majorana conditions on the second quantized H-spinors. Majorana conditions can
be however realized only for space-time dimension D mod 8 = 2 so that super string type
approach does not work in TGD context. This kind of conditions would also lead to the
non-conservation of baryon and lepton numbers.
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An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators .S, SJH whose anti-commutator
is Hamiltonian: {S, ST} = H. One can define a simpler system by considering a Hermitian
operator Sy = S+ ST satisfying S2 = H: this relation is completely analogous to the ordinary
Super Virasoro relation GG = L. On basis of this observation it is clear that one should
replace ordinary Super Virasoro structure GG = L with GG = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the
doubling of super generators and super generators carry U(1) charge having an interpretation
as fermion number in recent context. The so called short representations of N = 2 super-
symmetry algebra can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix I';,, n > 0 corresponds to an operator creating fermion whereas I';,,
n < 0 annihilates anti-fermion. For the Hermitian conjugate I'f, the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian
and are constructed as bilinears of the gamma matrices and their Hermitian conjugates and,
just like conserved currents of the ordinary quantum theory, contain parts proportional to
ata, b'b, afb’ and ab (a and b refer to fermionic and anti-fermionic oscillator operators).
The commutators between Kac Moody generators and Kac Moody generators and gamma
matrices remain as such.

For a given value of m G,, n > 0 creates fermions whereas G,, n < 0 annihilates anti-
fermions. Analogous result holds for GJ,. Virasoro generators remain Hermitian and decom-
pose just like Kac Moody generators do. Thus the usual anti-commutation relations for the
super Virasoro generators must be replaced with anti-commutations between G,, and G}
and one has

(GG} = 2L pn + S(m? — 1o s
{Gm, G} =0, (4.4)
{Gl..Gl} =0 .

The commutators of type [L,, L] are not changed. Same applies to the purely kinematical
commutators between L,, and G,,,/G] .

The Super Virasoro conditions satisfied by the physical states are as before in case of L,
whereas the conditions for G,, are doubled to those of G,,, n < 0 and GJ,, n > 0.

4.6.3 What could be the counterparts of stringy conformal fields in TGD frame-
work?

The experience with string models would suggest the conformal symmetries associated with
the complex coordinates of X? as a candidate for conformal super-symmetries. One can
imagine two counterparts of the stringy coordinate z in TGD framework.

(a) Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the
sense that the coefficients of generators depend on the invariant J = e*# Jag+/92 rather
than being completely free [K4]. Thus the real variable J replaces complex (or hyper-
complex) stringy coordinate and effective 1-dimensionality holds true also now but in
different sense than for conformal field theories.

(b) The slicing of X* by string world sheets Y2 and partonic 2-surfaces X2 implied by
number theoretical compactification implies string-parton duality and involves the super
conformal fermionic gauge symmetries associated with the coordinates v and w in the
dual dimensional reductions to stringy and partonic dynamics. These coordinates define
the natural analogs of stringy coordinate. The effective reduction of X} to braid by finite
measurement resolution implies the effective reduction of X*(X?) to string world sheet.
This implies quite strong resemblance with string model. The realization that spinor
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modes with well- define em charge must be localized at string world sheets makes the
connection with strings even more explicit [K15].

One can understand how Equivalence Principle emerges in TGD framework at space-
time level when many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/
manysheeted. jpg or Fig. 9 in the appendix of this book) is replaced with effective
space-time lumping together the space-time sheets to M* endowed with effective met-
ric. The quantum counterpart EP has most feasible interpretation in terms of Quantum
Classical Correspondence (QCC): the conserved Kéhler four-momentum equals to an
eigenvalue of conserved Kéhler-Dirac four-momentum acting as operator.

(c) The conformal fields of string model would reside at X2 or Y? depending on which
description one uses and complex (hyper-complex) string coordinate would be identified
accordingly. Y2 could be fixed as a union of stringy world sheets having the strands
of number theoretic braids as its ends. The proposed definition of braids is unique
and characterizes finite measurement resolution at space-time level. X2 could be fixed
uniquely as the intersection of X} (the light-like 3-surface at which induced metric of
space-time surface changes its signature) with §M$ x CP,. Clearly, wormhole throats
X 13 would take the role of branes and would be connected by string world sheets defined
by number theoretic braids.

(d) An alternative identification for TGD parts of conformal fields is inspired by M® — H
duality. Conformal fields would be fields in WCW . The counterpart of z coordinate
could be the hyper-octonionic M® coordinate m appearing as argument in the Laurent
series of WCW Clifford algebra elements. m would characterize the position of the tip
of CD and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford
algebras and thus inclusions of hyper-finite factors of type II;. Reduction to hyper-
quaternionic field -that is field in M* center of mass degrees of freedom- would be
needed to obtained associativity. The arguments m at various level might correspond
to arguments of N-point function in quantum field theory.

5 The Vanishing Of Super-Conformal Charges As A Gauge
Conditions Selecting Preferred Extremals Of Kahler Ac-
tion

Classical TGD [K2] involves several key questions waiting for clearcut answers.

(a) The notion of preferred extremal emerges naturally in positive energy ontology, where
Kéhler metric assigns a unique (apart from gauge symmetries) preferred extremal to
given 3-surface at M* time= constant section of imbedding space H = M* x CP,. This
would quantize the initial values of the time derivatives of imbedding coordinates and
this could correspond to the Bohr orbitology in quantum mechanics.

(b) In zero energy ontology (ZEO) initial conditions are replaced by boundary conditions.
One fixes only the 3-surfaces at the opposite boundaries of CD and in an ideal situation
there would exist a unique space-time surface connecting them. One must however
notice that the existence of light-like wormhole throat orbits at which the signature of the
induced metric changes (det(g4) = 0) its signature might change the situation. Does the
attribute " preferred” become obsolete and does one lose the beautiful Bohr orbitology,
which looks intuitively compelling and would realize quantum classical correspondence?

(c) Intuitively it has become clear that the generalization of super-conformal symmetries
by replacing 2-D manifold with metrically 2-D but topologically 3-D light-like boundary
of causal diamond makes sense. Generalized super-conformal symmetries should apply
also to the wormhole throat orbits which are also metrically 2-D and for which conformal
symmetries respect detg(gs4) = 0 condition. Quantum classical correspondence demands
that the generalized super-confornal invariance has a classical counterpart. How could
this classical counterpart be realized?


http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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(d) Holography is one key aspect of TGD and mean that 3-surfaces dictate everything. In
positive energy ontology the content of this statement would be rather obvious and
reduce to Bohr orbitology but in ZEO situation is different. On the other hand, TGD
strongly suggests strong form of holography based stating that partonic 2-surfaces (the
ends of wormhole throat orbits at boundaries of CD) and tangent space data at them
code for quantum physics of TGD. General coordinate invariance would be realized in
strong sense: one could formulate the theory either in terms of space-like 3-surfaces
at the ends of CD or in terms of light-like wormhole throat orbits. This would realize
Bohr orbitology also in ZEO by reducing the boundary conditions to those at partonic
2-surfaces. How to realize this explicitly at the level of field equations? This has been
the challenge.

Answering questions is extremely useful activity. During last years Hamed has posed contin-
ually questions related to the basic TGD. At this time Hamed asked about the derivation of
field equations of TGD. In ”"simple” field theories involving some polynomial non-linearities
the deduction of field equations is of course totally trivial process but in the extremely non-
linear geometric framework of TGD situation is quite different.

While answering the questions I made what I immediately dare to call a breakthrough dis-
covery in the mathematical understanding of TGD. To put it concisely: one can assume that
the variations at the light-like boundaries of CD vanish for all conformal variations which
are not isometries. For isometries the contributions from the ends of CD cancel each other
so that the corresponding variations need not vanish separately at boundaries of CD! This is
extremely simple and profound fact. This would be nothing but the realisation of the analogs
of conformal symmetries classically and give precise content for the notion of preferred ex-
ternal, Bohr orbitology, and strong form of holography. And the condition makes sense only
in ZEO!

I attach below the answers to the questions of Hamed almost as such apart from slight editing
and little additions, re-organization, and correction of typos.

5.1 Field Equations For Kahler Action

Hamed made some questions relating to the derivation of field equations for the extremals
of Kéahler action which led to the recent progress. I comment first these questions since they
lead naturally to the basic new idea.

5.1.1 The physical interpretation of the canonical momentum current

Hamed asked about the physical meaning of T = 9L/0(0,h*) - normal components of
canonical momentum labelled by the label k£ of imbedding space coordinates - it is good to
start from the physical meaning of a more general vector field

oL
T8 =
(Do hF)
with both imbedding space indices k and space-time indices o - canonical momentum cur-
rents. L refers to Kéhler action.

(a) One can start from the analogy with Newton’s equations derived from action princi-
ple (Lagrangian). Now the analogs are the partial derivatives OL/9(dz*/dt). For a
particle in potential one obtains just the momentum. Therefore the term canonical mo-
mentum current/density: one has kind of momentum current for each imbedding space
coordinate.

(b) By contracting with generators of imbedding space isometries (Poincare and color) one
indeed obtains conserved currents associated with isometries by Noether’s theorem:

jAa _ TlngAk )
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By field equations the divergences of these currents vanish and one obtains conserved
charged- classical four-momentum and color charges:

D, TA* =0 .

(¢) The normal component of conserved current must vanish at boundaries with one time-
like direction if one has such:

TA" = (.

Now one has wormhole throat orbits which are not genuine boundaries albeit analogous
to them and one must be very careful. The quantity 7' determines the values of normal
components of currents and must vanish at possible space-like boundaries.

Note that in TGD field equations reduce to the conservation of isometry currents as in
hydrodynamics where basic equations are just conservation laws.

5.1.2 The basic steps in the derivation of field equations

First a general recipe for deriving field equations from Ké&hler action - or any action as a
matter of fact.

(a) At the first step one writes an expression of the variation of the Kéhler action as sum of
variations with respect to the induced metric g and induced Kéhler form J. The partial
derivatives in question are energy momentum tensor and contravariant Kahler form.

(b) After this the variations of g and J are expressed in terms of variations of imbedding
space coordinates, which are the primary dynamical variables.

(¢) The integral defining the variation can be decomposed to a total divergence plus a term
vanishing for extremals for all variations: this gives the field equations. Total divergence
term gives a boundary term and it vanishes by boundary conditions if the boundaries
in question have time-like direction.

If the boundary is space-like, the situation is more delicate in TGD framework: this will
be considered in the sequel. In TGD situation is also delicate also because the light-
like 3-surfaces which are common boundaries of regions with Minkowskian or Euclidian
signature of the induced metric are not ordinary topological boundaries. Therefore a
careful treatment of both cases is required in order to not to miss important physics.

Expressing this summary more explicitly, the variation of the Kahler action with respect to
the gradients of the imbedding space coordinates reduces to the integral of

0K
T2, 0h" + W&hk .

The latter term comes only from the dependence of the imbedding space metric and Kahler
form on imbedding space coordinates. One can use a simple trick. Assume that they do not
depend at all on imbedding space coordinates, derive field equations, and replaced partial
derivatives by covariant derivatives at the end. Covariant derivative means covariance with
respect to both space-time and imbedding space vector indices for the tensorial quantities
involved. The trick works because imbedding space metric and K&hler form are covariantly
constant quantities.

The integral of the first term T,f‘aaéhk decomposes to two parts.

(a) The first term, whose vanishing gives rise to field equations, is integral of

D, T ShE .
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(b)

The second term is integral of

Do (TESHF) .

This term reduces as a total divergence to a 3-D surface integral over the boundary
of the region of fixed signature of the induced metric consisting of the ends of CD and
wormhole throat orbits (boundary of region with fixed signature of induced metric). This
term vanishes if the normal components 7}’ of canonical momentum currents vanishes
at the boundary like region.

In the sequel the boundary terms are discussed explicitly and it will be found that their
treatment indeed involves highly non-trivial physics.

5.1.3 Complex isometry charges and twistorialization

TGD space-time contains regions of both Minkowskian and Euclidian signature of metric.
This has some highly non-trivial consequences.

(a)

Should one assume that \/det(g4) is imaginary in Minkowskian and real in Euclidian
region? For Kéahler action this is sensible and Euclidian region would give a real negative
contribution giving rise to exponent of Kéhler function of WCW (“world of classical
worlds”) making the functional integral convergent. Minkowskian regions would give
imaginary contribution to the exponent causing interference effects absolutely essential
in quantum field theory. This contribution would correspond to Morse function for
WCW .

The implication would be that the classical four-momenta in Euclidian/Minkowskian
regions are imaginary/real. What could the interpretation be? Should one accept as a
fact that four-momenta are complex.

Twistor approach to TGD is now in quite good shape [K12]. M? x CP; is the unique
choice is one requires that the Cartesian factors allow twistor space with Kéahler structure
and classical TGD allows twistor formulation.

In the recent formulation the fundamental fermions are assumed to propagate with
light-like momenta along wormhole throats. At gauge theory limit particles must have
massless or massive four-momenta. One can however also consider the possibility of
complex massless momenta and in the standard twistor approach on mass shell massless
particles appearing in graphs indeed have complex momenta. These complex momenta
should by quantum classical correspondence correspond directly to classical complex
momenta.

A funny question popping in mind is whether the massivation of particles could be
such that the momenta remain massless in complex sense! The complex variant of
light-likeness condition would be

pze:p%m ’ pre’p[m:O .

Could one interpret pf-m as the mass squared of the particle? Or could p%m code for the
decay width of an unstable particle? This option does not look feasible.

The complex momenta could provide an elegant 4-D space-time level representation for
the isometry quantum numbers at the level of imbedding space. The ground states of
the super-conformal representations have as building bricks the spinor harmonics of the
imbedding space which correspond to the analogs of massless particles in 8-D sense [KT].
Indeed, the condition giving mass squared eigenvalues for the spinor harmonics is just
massless condition in M* x CP,.

At the space-time level these conditions must be replaced by 4-D conditions and complex
masslessness would be the elegant manner to realizes this. Also the massivation of
massless states by p-adic thermodynamics could have similar description.

This interpretation would also conform with M® — M* x C'P; duality [K18] at the level
of momentum space.
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5.2 Boundary Conditions At Boundaries Of CD

In positive energy ontology one would formulate boundary conditions as initial conditions by
fixing both the 3-surface and associated canonical momentum densities at either end of CD
(positions and momenta of particles in mechanics). This would bring asymmetry between
boundaries of CD. In ZEO the basic boundary condition is that space-time surfaces have as
their ends the members of pairs of surfaces at the ends of CD. Besides this one can have
additional boundary conditions and the notion of preferred extremal suggests this.

5.2.1 Do boundary conditions realize quantum classical correspondence?

In TGD framework one must carefully consider the boundary conditions at the boundaries
of CDs. What is clear that the time-like boundary contributions from the boundaries of CD
to the variation must vanish.

(a) This is true if the variations are assumed to vanish at the ends of CD. This might be
however too strong a condition.

(b) One cannot demand the vanishing of T} (¢ refers to time coordinate as normal coordi-
nate) since this would give only vacuum extremals. One could however require quantum
classical correspondence for any Cartan sub-algebra of isometries whose elements define
maximal set of isometry generators. The eigenvalues of quantal variants of isometry
charge assignable to second quantized induced spinors at the ends of space-time surface
are equal to the classical charges. Is this actually a formulation of Equivalence Principle,
is not quite clear to me.

5.2.2 Do boundary conditions realize preferred extremal property as a choice
of conformal gauge?

While writing this a completely new idea popped to my mind. What if one poses the van-
ishing of the boundary terms at boundaries of CDs as additional boundary conditions for all
variations except isometries 7 Of perhaps for all conformal variations (conformal in TGD
sense)? This would not imply vanishing of isometry charges since the variations coming from
the opposite ends of CD cancel each other! It soon became clear that this would allow to
meet all the challenges listed in the beginning!

(a) These conditions would realize Bohr orbitology also to ZEO approach and define what
”preferred extremal” means.

(b) The conditions would be very much like super-Virasoro conditions stating that the su-
perconformal generators with non-vanishing conformal weight annihilate states or create
zero norm states but no conditions are posed on generators with vanishing conformal
weight (now isometries). One could indeed assume only deformations, which are local
isometries assignable to the generalised conformal algebra of the § M. ff_ / — xCP,. For ar-
bitrary variations one would not require the vanishing. This could be the long sought for
precise formulation of super-conformal invariance at the level of classical field equations!
It is enough co consider the weaker conditions that the conformal charges defined as
integrals of corresponding Noether currents vanish. These conditions would be direct
equivalents of quantal conditions.

(¢) The natural interpretation would be as a fixing of conformal gauge. This fixing would be
motivated by the fact that WCW Kaéhler metric must possess isometries associated with
the conformal algebra and can depend only on the tangent data at partonic 2-surfaces
as became clear already for more than two decades ago. An alternative, non-practical
option would be to allow all 3-surfaces at the ends of CD: this would lead to the problem
of eliminating the analog of the volume of gauge group from the functional integral.

(d) The conditions would also define precisely the notion of holography and its reduction
to strong form of holography in which partonic 2-surfaces and their tangent space data
code for the dynamics.
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Needless to say, the modification of this approach could make sense also at partonic orbits.

5.3 Boundary Conditions At Parton Orbits

The contributions from the orbits of wormhole throats are singular since the contravariant
form of the induced metric develops components which are infinite (det(g4) = 0). The
contributions are real at Euclidian side of throat orbit and imaginary at the Minkowskian
side so that they must be treated as independently.

5.3.1 Conformal gauge choice, preferred extremal property, hierarchy of Planck
constants, and TGD as almost topological QFT

The generalization of the boundary conditions as a classical realization conformal gauge
invariance is natural.

(a) One can consider the possibility that under rather general conditions the normal com-
ponents T7'+/det(gs) approach to zero at partonic orbits since det(g4) is vanishing.
Note however the appearance of contravariant appearing twice as index raising opera-
tor in Kéhler action. If so, the vanishing of T}'\/det(g4) need not fix completely the
"boundary” conditions. In fact, I assign to the wormhole throat orbits conformal gauge
symmetries so that just this is expected on physical grounds.

(b) Generalized conformal invariance would suggest that the variations defined as integrals
of T{*/det(g4)Sh* vanish in a non-trivial manner for the conformal algebra associated
with the light-like wormhole throats with deformations respecting det(g4) = 0 condition.
Also the variations defined by infinitesimal isometries (zero conformal weight sector)
should vanish since otherwise one would lose the conservation laws for isometry charges.
The conditions for isometries might reduce to T} /det(gs) — 0 at partonic orbits. Also
now the interpretation would be in terms of fixing of conformal gauge.

(c) Even T'\/g = 0 condition need not fix the partonic orbit completely. The Gribov
ambiguity meaning that gauge conditions do not fix uniquely the gauge potential could
have counterpart in TGD framework. It could be that there are several conformally
non-equivalent space-time surfaces connecting 3-surfaces at the opposite ends of CD.
If so, the boundary values at wormhole throats orbits could matter to some degree:
very natural in boundary value problem thinking but new in initial value thinking. This
would conform with the non-determinism of Kahler action implying criticality and the
possibility that the 3-surfaces at the ends of CD are connected by several space-time
surfaces which are physically non-equivalent.

(d) The hierarchy of Planck [K5] constants assigned to dark matter, quantum criticality
and even criticality indeed relies on the assumption that h.fs = n X h corresponds to
n-fold coverings having n space-time sheets which coincide at the ends of CD and that
conformal symmetries act on the sheets as gauge symmetries. One would have as Gribov
copies n conformal equivalence classes of wormhole throat orbits and corresponding
space-time surfaces. Depending on whether one fixes the conformal gauge one has n
equivalence classes of space-time surfaces or just one representative from each conformal
equivalent class.

(e) There is also the question about the correspondence with the weak form of electric

magnetic duality [K2]. This duality plus the condition that j*A, = 0 in the interior of
space-time surface imply the reduction of Kéahler action to Chern-Simons terms. This
would suggest that the boundary variation of the Kéhler action reduces to that for
Chern-Simons action which is indeed well-defined for light-like 3-surfaces.
If so, the gauge fixing would reduce to variational equations for Chern-Simons action!
A weaker condition is that classical conformal charges vanish. This would give a nice
connection to the vision about TGD as almost topological QFT. In TGD framework
these conditions do not imply the vanishing of Kéahler form at boundaries. The condi-
tions are satisfied if the C'P, projection of the partonic orbit is 2-D: the reason is that
Chern-Simons term vanishes identically in this case.
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5.3.2 Fractal hierarchy of conformal symmetry breakings

A further intuitively natural hypothesis is that there is a fractal hierarchy of breakings of
conformal symmetry.

(a) Only the generators of conformal sub-algebra with conformal weight multiple of n act

as gauge symmetries. This would give infinite hierarchies of breakings of conformal
symmetry interpreted in terms of criticality: in the hierarchy n; divides n;41.
Similar degeneracy would be associated with both the parton orbits and the space-like
ends at CD boundaries and I have considered the possibility that the integer n appearing
in hess has decomposition n = ning corresponding to the degeneracies associated with
the two kinds of boundaries. Alternatively, one could have just n = ny = ny from the
condition that the two conformal symmetries are 3-dimensional manifestations of single
4-D analog of conformal symmetry.

(b) In the symmetry breaking n; — n;y; the conformal charges, which vanished earlier,
would become non-vanishing. Could one require that they are conserved that is the
contributions of the boundary terms at the ends of CD cancel each other? If so, one
would have dynamical conformal symmetry.

What could the proper interpretation of the conformal hierarchies n; — n;417

(a) Could one interpret the hierarchy in terms of increasing measurement resolution? Con-
formal degrees of freedom below measurement resolution would be gauge degrees of
freedom and the conformal hierarchies would correspond to an inclusion hierarchies for
hyper-finite factors of type IIy [K14]. If h.yy = n x h defines the conformal gauge
sub-algebra, the improvement of the resolution would scale up the Compton scales and
would quite concretely correspond to a zoom analogous to that done for Mandelbrot
fractal to get new details visible. From the point of view of cognition the improving
resolution would fit nicely with the recent view about h.sr/h as a kind of intelligence
quotient.

This interpretation might make sense for the symplectic algebra of §M4{ x C'P; for which
the light-like radial coordinate rj; of light-cone boundary takes the role of complex
coordinate. The reason is that symplectic algebra acts as isometries.

(b) Suppose that the Kahler action has vanishing variation under deformations defined by
the broken conformal symmetries so that the corresponding conformal charges As a con-
sequence, Kahler function would be critical with respect to the corresponding variations.
The components of WCW Kahler metric expressible in terms of second derivatives of
Kahler function can be however non-vanishing and have also components, which corre-
spond to WCW coordinates associated with different partonic 2-surfaces. This conforms
with the idea that conformal algebras extend to Yangian algebras generalizing the Yan-
gian symmetry of AV = 4 symmetric gauge theories.

In this kind of situation one could consider the interpretation in terms of criticality: the
lower the criticality, the larger then value of h.r¢ and h and the higher the resolution.

(¢) m gives also the number of space-time sheets in the singular covering. Could the inter-
pretation be in terms measurement resolution for counting the number of space-time
sheets. Our recent quantum physics would only see single space-time sheet representing
visible manner and dark matter would become visible only for n > 1.

As should have become clear, the derivation of field equations in TGD framework is not
just an application of a formal recipe as in field theories and a lot of non-trivial physics is
involved!

5.4 Surface Area As Geometric Representation Of Entanglement
Entropy?

In Thinking Allowed Original there was a link to a talk by James Sully and having the title
Geometry of Compression. I must admit that I understood very little about the talk. My not
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so educated guess is however that information is compressed: UV or IR cutoff eliminating
entanglement in short length scales and describing its presence in terms of density matrix -
that is thermodynamically - is another manner to say it. The TGD inspired proposal for the
interpretation of the inclusions of hyper-finite factors of type Iy (HFFs) [K14] is in spirit
with this.

The space-time counterpart for the compression would be in TGD framework discretization.
Discretizations using rational points (or points in algebraic extensions of rationals) make
sense also p-adically and thus satisfy number theoretic universality. Discretization would be
defined in terms of intersection (rational or in algebraic extension of rationals) of real and p-
adic surfaces. At the level of “world of classical worlds” the discretization would correspond
to - say - surfaces defined in terms of polynomials, whose coefficients are rational or in some
algebraic extension of rationals. Pinary UV and IR cutoffs are involved too. The notion
of p-adic manifold allows to interpret the p-adic variants of space-time surfaces as cognitive
representations of real space-time surfaces.

Finite measurement resolution does not allow state function reduction reducing entangle-
ment totally. In TGD framework also negentropic entanglement stable under Negentropy
Maximixation Principle (NMP) is possible [K8]. For HFFs the projection into single ray of
Hilbert space is indeed impossible: the reduction takes always to infinite-D sub-space.

The visit to the URL was however not in vain. There was a link to an [article [B2] discussing
the geometrization of entanglement entropy inspired by the AdS/CFT hypothesis.

Quantum classical correspondence is basic guiding principle of TGD and suggests that en-
tanglement entropy should indeed have space-time correlate, which would be the analog of
Hawking-Bekenstein entropy.

5.4.1 Generalization of AdS/CFT to TGD context

AdS/CFT generalizes to TGD context in non-trivial manner. There are two alternative inter-
pretations, which both could make sense. These interpretations are not mutually exclusive.
The first interpretation makes sense at the level of “world of classical worlds” ( WCW ) with
symplectic algebra and extended conformal algebra associated with §M$ replacing ordinary
conformal and Kac-Moody algebras. Second interpretation at the level of space-time surface
with the extended conformal algebras of the light-likes orbits of partonic 2-surfaces replacing
the conformal algebra of boundary of AdS™.

1. First interpretation

For the first interpretation 2-D conformal invariance is generalised to 4-D conformal invari-
ance relying crucially on the 4-dimensionality of space-time surfaces and Minkowski space.

(a) One has an extension of the conformal invariance provided by the symplectic transfor-
mations of 0CD x CP, for which Lie algebra has the structure of conformal algebra
with radial light-like coordinate of 5Mfi replacing complex coordinate z.

(b) One could see the counterpart of AdS, as imbedding space H = M* x C'P, completely
unique by twistorial considerations and from the condition that standard model sym-
metries are obtained and its causal diamonds defined as sub-sets C'D x C'P,, where CD
is an intersection of future and past directed light-cones. I will use the shorthand CD
for CD x CP,. Strings in AdSs x S° are replaced with space-time surfaces inside 8-D
CD.

(c) For this interpretation 8-D CD replaces the 10-D space-time AdSs x S°. 7-D light-like
boundaries of CD correspond to the boundary of say AdSs, which is 4-D Minkowski
space so that zero energy ontology (ZEO) allows rather natural formulation of the
generalization of AdS/CFT correspondence since the positive and negative energy parts
of zero energy states are localized at the boundaries of CD.
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5.4.2 Second interpretation

For the second interpretation relies on the observation that string world sheets as carriers
of induced spinor fields emerge in TGD framework from the condition that electromagnetic
charge is well-defined for the modes of induced spinor field.

(a) One could see the 4-D space-time surfaces X* as counterparts of AdS,;. The boundary of
AdS, is replaced in this picture with 3-surfaces at the ends of space-time surface at oppo-
site boundaries of CD and by strong form of holography the union of partonic 2-surfaces
defining the intersections of the 3-D boundaries between Euclidian and Minkowskian re-
gions of space-time surface with the boundaries of CD. Strong form of holography in
TGD is very much like ordinary holography.

(b) Note that one has a dimensional hierarchy: the ends of the boundaries of string world
sheets at boundaries of CD as point-like partices, boundaries as fermion number carrying
lines, string world sheets, light-like orbits of partonic 2-surfaces, 4-surfaces, imbedding
space M* x CP,. Clearly the situation is more complex than for AdS/CFT correspon-
dence.

(c) One can restrict the consideration to 3-D sub-manifolds X3 at either boundary of causal
diamond (CD): the ends of space-time surface. In fact, the position of the other bound-
ary is not well-defined since one has superposition of CDs with only one boundary fixed
to be piece of light-cone boundary. The delocalization of the other boundary is essen-
tial for the understanding of the arrow of time. The state function reductions at fixed
boundary leave positive energy part (say) of the zero energy state at that boundary in-
variant (in positive energy ontology entire state would remain unchanged) but affect the
states associated with opposite boundaries forming a superposition which also changes
between reduction: this is analog for unitary time evolution. The average for the dis-
tance between tips of CDs in the superposition increases and gives rise to the flow of
time.

(d) One wants an expression for the entanglement entropy between X3 and its partner.
Bekenstein area law allows to guess the general expression for the entanglement entropy:
for the proposal discussed in the article the entropy would be the area of the boundary
of X3 divided by gravitational constant: S = A/4G. In TGD framework gravitational
constant might be replaced by the square of C' P, radius apart from numerical constant.
How gravitational constant emerges in TGD framework is not completely understood
although one can deduce for it an estimate using dimensional analyses. In any case,
gravitational constant is a parameter which characterizes GRT limit of TGD in which
many-sheeted space-time is in long scales replaced with a piece of Minkowski space such
that the classical gravitational fields and gauge potentials for sheets are summed. The
physics behind this relies on the generalization of linear superposition of fields: the
effects of different space-time sheets particle touching them sum up rather than fields.

(e) The counterpart for the boundary of X3 appearing in the proposal for the geometrization

of the entanglement entropy naturally corresponds to partonic 2-surface or a collection
of them if strong form of holography holds true.
There is however also another candidate to be considered! Partonic 2-surfaces are basic
objects, and one expects that the entanglement between fundamental fermions associ-
ated with distinct partonic 2-surfaces has string world sheets as space-time correlates.
Could the area of the string world sheet in the effective metric defined by the anti-
commutators of K-D gamma matrices at string world sheet provide a measure for en-
tanglement entropy? If this conjecture is correct: the entanglement entropy would be
proportional to Kéhler action. Also negative values are possible for Kéahler action in
Minkowskian regions but in TGD framework number theoretic entanglement entropy
having also negative values emerges naturally.

Which of these guesses is correct, if any? Or are they equivalent?
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5.4.3 With what kind of systems 3-surfaces can entangle?

With what system X? is entangled/can entangle? There are several options to consider and
they could correspond to the two TGD variants for the AdS/CFT correspondence.

(a) X3 could correspond to a wormhole contact with Euclidian signature of induced met-
ric. The entanglement would be between it and the exterior region with Minkowskian
signature of the induced metric.

(b) X3 could correspond to single sheet of space-time surface connected by wormhole con-
tacts to a larger space-time sheet defining its environment. More precisely, X3 and its
complement would be obtained by throwing away the wormhole contacts with Euclid-
ian signature of induce metric. Entanglement would be between these regions. In the
generalization of the formula

A
- 4RG

area A would be replaced by the total area of partonic 2-surfaces and G perhaps with
CP, length scale squared.

S

(¢) In ZEO the entanglement could also correspond to time-like entanglement between the
3-D ends of the space-time surface at opposite light-like boundaries of CD. M-matrix,
which can be seen as the analog of thermal S-matrix, decomposes to a product of
hermitian square root of density matrix and unitary S-matrix and this hermitian matrix
could also define p-adic thermodynamics. Note that in ZEO quantum theory can be
regarded as square root of thermodynamics.

5.4.4 Minimal surface property is not favored in TGD framework

Minimal surface property for the 3-surfaces X2 at the ends of space-time surface looks at
first glance strange but a proper generalization of this condition makes sense if one assumes
strong form of holography. Strong form of holography realizes General Coordinate Invariance
(GCI) in strong sense meaning that light-like parton orbits and space-like 3-surfaces at the
ends of space-time surfaces are equivalent physically. As a consequence, partonic 2-surfaces
and their 4-D tangent space data must code for the quantum dynamics.

The mathematical realization is in terms of conformal symmetries accompanying the sym-
plectic symmetries of §M$ x C'P, and conformal transformations of the light-like partonic
orbit [K15]. The generalizations of ordinary conformal algebras correspond to conformal al-
gebra, Kac-Moody algebra at the light-like parton orbits and to symplectic transformations
SM* x CP, acting as isometries of WCW and having conformal structure with respect to
the light-like radial coordinate plus conformal transformations of 6Mff_, which is metrically
2-dimensional and allows extended conformal symmetries.

(a) If the conformal realization of the strong form of holography works, conformal trans-
formations act at quantum level as gauge symmetries in the sense that generators with
no-vanishing conformal weight are zero or generate zero norm states. Conformal de-
generacy can be eliminated by fixing the gauge somehow. Classical conformal gauge
conditions analogous to Virasoro and Kac-Moody conditions satisfied by the 3-surfaces
at the ends of CD are natural in this respect. Similar conditions would hold true for
the light-like partonic orbits at which the signature of the induced metric changes.

(b) What is also completely new is the hierarchy of conformal symmetry breakings asso-
ciated with the hierarchy of Planck constants hesys/h = n [K5]. The deformations of
the 3-surfaces which correspond to non-vanishing conformal weight in algebra or any
sub-algebra with conformal weights vanishing modulo n give rise to vanishing classical
charges and thus do not affect the value of the Kahler action [K15].

The inclusion hierarchies of conformal sub-algebras are assumed to correspond to those
for hyper-finite factors. There is obviously a precise analogy with quantal conformal
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invariance conditions for Virasoro algebra and Kac-Moody algebra. There is also hi-
erarchy of inclusions which corresponds to hierarchy of measurement resolutions. An
attractive interpretation is that singular conformal transformations relate to each other
the states for broken conformal symmetry. Infinitesimal transformations for symmetry
broken phase would carry fractional conformal weights coming as multiples of 1/n.

(¢) Conformal gauge conditions need not reduce to minimal surface conditions holding true
for all variations.

(d) Note that Kéhler action reduces to Chern-Simons term at the ends of CD if weak
form of electric magnetic duality holds true. The conformal charges at the ends of CD
cannot however reduce to Chern-Simons charges by this condition since only the charges
associated with C'P, degrees of freedom would be non-trivial.

The way out of the problem is provided by the generalization of AdS/CFT conjecture. String
area is estimated in the effective metric provided by the anti-commutator of K-D gamma
matrices at string world sheet.

5.5 Related Ideas

p-Adic mass calculations led to the introduction of the p-adic variant of Bekenstein-Hawkin
law in which Planck length is replaced by p-adic length scale. This generalization is in spirit
with the idea that string world sheet area is estimated in effective rather than induced metric.

5.5.1 p-Adic variant of Bekenstein-Hawking law

When the 3-surface corresponds to elementary particle, a direct connection with p-adic ther-
modynamics suggests itself and allows to answer the questions above. p-Adic thermodynam-
ics could be interpreted as a description of the entanglement with environment. In ZEO
the entanglement could also correspond to time-like entanglement between the 3-D ends
of the space-time surface at opposite light-like boundaries of CD. M-matrix, which can be
seen as the analog of thermal S-matrix, decomposes to a product of hermitian square root
of density matrix and unitary S-matrix and this hermitian matrix could also define p-adic
thermodynamics.

(a) p-Adic thermodynamics [K16] would not be for energy but for mass squared (or scaling
generator Lg) would describe the entanglement of the particle with environment defined
by the larger space-time sheet. Conformal weights would comes as positive powers of
integers (p§ would replace exzp(—H/T) to guarantee the number theoretical existence
and convergence of the Boltzmann weight: note that conformal invariance that is integer
spectrum of Ly is also essential).

(b) The interactions with environment would excite very massive C' P, mass scale excitations
(mass scale is about 10~* times Planck mass) of the particle and give it thermal mass
squared identifiable as the observed mass squared. The Boltzmann weights would be
extremely small having p-adic norm about 1/p", p the p-adic prime: Moy = 2127 — 1
for electron.

(c) One of the first ideas inspired by p-adic vision was that p-adic entropy could be seen
as a p-adic counterpart of Bekenstein-Hawking entropy [K10]. S = (R?/h?) x M? holds
true identically apart from numerical constant. Note that one could interpret R2M/h as
the counterpart of Schwartschild radius. Note that this radius is proportional to 1//p
so that the area A would correspond to the area defined by Compton length. This is in
accordance with the third option.

5.5.2 What is the space-time correlate for negentropic entanglement?

The new element brought in by TGD framework is that number theoretic entanglement
entropy is negative for negentropic entanglement assignable to unitary entanglement and



6. Appendix: Hamilton-Jacobi Structure 48

NMP states that this negentropy increases [K§|. Since entropy is essentially number of energy
degenerate states, a good guess is that the number n = hcyy/h of space-time sheets associated
with he.rr defines the negentropy. An attractive space-time correlate for the negentropic
entanglement is braiding. Braiding defines unitary S-matrix between the states at the ends
of braid and this entanglement is negentropic. This entanglement gives also rise to topological
quantum computation.

6 Appendix: Hamilton-Jacobi Structure

In the following the definition of Hamilton-Jacobi structure is discussed in detail.

6.1 Hermitian And Hyper-Hermitian Structures

The starting point is the observation that besides the complex numbers forming a number
field there are hyper-complex numbers. Imaginary unit 4 is replaced with e satisfying e = 1.
One obtains an algebra but not a number field since the norm is Minkowskian norm 2% — 32,
which vanishes at light-cone x = y so that light-like hypercomplex numbers z £ e) do not
have inverse. One has “almost” number field.

Hyper-complex numbers appear naturally in 2-D Minkowski space since the solutions of a
massless field equation can be written as f = g(u = t—ex)+h(v = t+ex) whith €2 = 1 realized
by putting e = 1. Therefore Wick rotation relates sums of holomorphic and antiholomorphic
functions to sums of hyper-holomorphic and anti-hyper-holomorphic functions. Note that u
and v are hyper-complex conjugates of each other.

Complex n-dimensional spaces allow Hermitian structure. This means that the metric has
in complex coordinates (z1, ...., 2, ) the form in which the matrix elements of metric are non-
vanishing only between z; and complex conjugate of z;. In 2-D case one obtains just ds* =
g.zdzdz. Note that in this case metric is conformally flat since line element is proportional
to the line element ds? = dzdz of plane. This form is always possible locally. For complex
n-D case one obtains ds? = giidzidfj - 9;7 = J;; guaranteeing the reality of ds?. In 2-D case
this condition gives g,z = 7.z.

How could one generalize this line element to hyper-complex n-dimensional case. In 2-D case
Minkowski space M? one has ds? = gu,dudv, guw = 1. The obvious generalization would
be the replacement ds? = Guiv; du’dv?. Also now the analogs of reality conditions must hold
with respect to u; <> v;.

6.2 Hamilton-Jacobi Structure

Consider next the path leading to Hamilton-Jacobi structure.

4-D Minkowski space M* = M? x E? is Cartesian product of hyper-complex M? with com-
plex plane E2?, and one has ds? = dudv + dzdZ in standard Minkowski coordinates. One
can also consider more general integrable decompositions of M* for which the tangent space
TM* = M* at each point is decomposed to M?(x) x E?(x). The physical analogy would
be a position dependent decomposition of the degrees of freedom of massless particle to lon-
gitudinal ones (M?(x): light-like momentum is in this plane) and transversal ones (E?(x):
polarization vector is in this plane). Cylindrical and spherical variants of Minkowski coordi-
nates define two examples of this kind of coordinates (it is perhaps a good exercise to think
what kind of decomposition of tangent space is in question in these examples). An interesting
mathematical problem highly relevant for TGD is to identify all possible decompositions of
this kind for empty Minkowski space.

The integrability of the decomposition means that the planes M?(x) are tangent planes for
2-D surfaces of M* analogous to Euclidian string world sheet. This gives slicing of M* to
Minkowskian string world sheets parametrized by euclidian string world sheets. The question
is whether the sheets are stringy in a strong sense: that is minimal surfaces. This is not the
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case: for spherical coordinates the Euclidian string world sheets would be spheres which are
not minimal surfaces. For cylindrical and spherical coordinates howeverr M?(x) integrate to
plane M?2, which is minimal surface.

Integrability means in the case of M?(x) the existence of light-like vector field J whose flow
lines define a global coordinate. Its existence implies also the existence of its conjugate
and together these vector fields give rise to M?(x) at each point. This means that one has
J = UV®: & indeed defines the global coordinate along flow lines. In the case of M? either
the coordinate u or v would be the coordinate in question. This kind of flows are called
Beltrami flows. Obviously the same holds for the transversal planes EZ2.

One can generalize this metric to the case of general 4-D space with Minkowski signature of
metric. At least the elements g,, and g,z are non-vanishing and can depend on both u,v
and z,%Z. They must satisfy the reality conditions g,z = g,z and gy, = Gy Where complex
conjugation in the argument involves also u <> v besides z < Z.

The question is whether the components g,., g,», and their complex conjugates are non-
vanishing if they satisfy some conditions. They can. The direct generalization from complex
2-D space would be that one treats u and v as complex conjugates and therefore requires a
direct generalization of the hermiticity condition

Juz = Gvz 5 vz = Juz -

This would give complete symmetry with the complex 2-D (4-D in real sense) spaces. This
would allow the algebraic continuation of hermitian structures to Hamilton-Jacobi structures
by just replacing ¢ with e for some complex coordinates.
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